Home
Class 12
MATHS
y=(sinx)^(tanx)+(cosx)^(secx)...

`y=(sinx)^(tanx)+(cosx)^(secx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

Differentiate the following w.r.t. x: (sinx)^(tanx) + (cosx)^(secx)

u=(sinx)^(tanx) , v=(cosx)^(secx) . Find (du)/dx and (dv)/dx .

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

y=(tanx)^(logx)+(cosx)^(sinx)

Find the derivative of y = (sinx)^x + (cosx)^(tanx) .

y=(tanx)^(logx)+(cosx)^(sinx) , find dy/dx

If y=(sinx)^(tanx),t h e n(dy)/(dx)= (a) (sinx)^(tanx)(1+sec^2xlogsinx) (b) tanx(sinx)^(tanx-1)cosx (c) (sinx)^(tanx) (d) sec^2xlogsinx tanx(sinx)^(tanx-1)