Home
Class 11
MATHS
int(17)^(5)lim(n rarr oo)(1^(2)+2^(2)+3^...

int_(17)^(5)lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+...+n^(2))/(n^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1 ^ (2) + 2 ^ (2) ... + n ^ (2)) / (n ^ (3))

lim_(n rarr oo)(2^(3n))/(3^(2n))=

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

Evaluate: lim_(n rarr oo) ((1^(2)+2^(2)+3^(2)+...+n^(2)))/((1+3+5+7+...+"n terms")) .

lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =