Home
Class 12
MATHS
f(x)={[(|x-a|)/(x-1),x!=a],[1,x=a," at "...

f(x)={[(|x-a|)/(x-1),x!=a],[1,x=a," at "x=a]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(xrarr1) f(x) where f(x)= {[(x^2-1)/(x-1), x ne 1],[1, x=1]:}

For what value of k is the function f(x)={(x^2-1)/(x-1), ,x!=1,k,x=1" continuous at"x=1?

Examine the continuity of f(x) = {(|x-1|/(x-1), x ne 1),(0, x =1):} at x = 1

For what value of k is the function f(x)={(x^2-1)/(x-1),\ \ \ x!=1k ,\ \ \ x=1 continuous at x=1 ?

f(x)=(x^(n)-1)/(x-1),x!=1 and f(x)=n^(2),x=1 continuous at x=1 then the value of n

Verify the existence of lim_ (x to 1)f(x) , where f(x)={{:((|x-1|)/(x-1),"for" x ≠ 1),(0,"for" x=1):}

If f(x)= {(([x]-1)/(x-1), x ne 1),(0, x=1):} then f(x) is

Identify the given functions whether odd or even or neither: f(x)={(x|x| ,, xlt=-1),([x+1]+[1-x] ,, -1lt x lt1),(-x|x| ,, xgt=1):}

Identify the given functions whether odd or even or neither: f(x)={(x|x| ,, xlt=-1),([x+1]+[1-x] ,, -1lt x lt1),(-x|x| ,, xgt=1):}

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is: