Home
Class 12
MATHS
Write the domain of the real function...

Write the domain of the real function `f(x)=1/(sqrt(|x|-x))`

Text Solution

Verified by Experts

The function `f(x)=frac{1}{sqrt{|x|-x}}` is defined only when `|x|-x>0` `|x|>x`

`frac{{x}}{|{x}|}<1`

This is possible only when `x in(-infty, 0)`

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA|Exercise Solved Examples And Exercises|67 Videos
  • HIGHER ORDER DERIVATIVES

    RD SHARMA|Exercise Solved Examples And Exercises|176 Videos

Similar Questions

Explore conceptually related problems

Write the domain of the real function f(x)=sqrt(x-[x]) .

Find the domain of the real function f(x)=sqrt(x^2 -4)

Knowledge Check

  • What is the domain of the function f(x)= (1)/sqrt(|x|-x)

    A
    `(-infty,0)`
    B
    `(0,infty)`
    C
    `0 lt x lt 1`
    D
    `x gt 1`
  • What is the domain of the function f(x)=(1)/(sqrt(|x|-x)) ?

    A
    `(-oo,0)`
    B
    `(0,oo)`
    C
    `0ltxlt1`
    D
    `xgt1`
  • The domain of the function f(x)= (1)/sqrt(|x|-x) is

    A
    `[0,infty]`
    B
    `(-infty,0)`
    C
    `[1,infty)`
    D
    `(-infty,0]`
  • Similar Questions

    Explore conceptually related problems

    find the domain of the given function f(x)=(1)/(sqrt(x+|x|))

    The domain of the function f(x) =(1)/(sqrt(|x|-x)) , is

    Write the domain of the function f(x)=sqrt(|x|-x)

    The domain of the function f(x)=log_(e)((1)/(sqrt(|x|-x))) is

    The domain of the function f(x)=(1)/(sqrt|x|-x) is