Home
Class 12
MATHS
Prove that: (i)tan^(-1){(sqrt(1+cosx)+s...

Prove that: `(i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2`,

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: tan^(-1)[ (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))] =(pi)/(4)+(x)/(2), x in [0, pi]

intcosx/sqrt(1+cosx)dx

int(sqrt(1+cosx))/(1-cosx)dx=

int sqrt(1-cosx)dx

intcot^(-1)sqrt((1+cosx)/(1-cosx))dx=

sin^(-1){sqrt((1-cosx)/(2))}

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

Simplest form of tan^(-1)((sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))), pi lt x lt (3pi)/2 is :

Prove that : tan^(-1)((cosx)/(1-sinx))-cot^(-1)(sqrt((1+cosx)/(1-cosx)))=(pi)/(4), x in (0, pi//2) .

(d)/(sx)[log(sqrt((1-cosx)/(1+cosx)))]=