Home
Class 12
MATHS
Prove that: tan^(-1){(sqrt(1+cosx)+sqrt(...

Prove that: `tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4-x/2,\ if\ pi < x <\3pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: tan^(-1)[ (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))] =(pi)/(4)+(x)/(2), x in [0, pi]

If x in (pi, 2pi) , prove that ((sqrt(1+cosx))+(sqrt(1-cos x)))/((sqrt(1+cos x)) -sqrt(1-cos x)) = cot(pi/4 +x/2)

Simplest form of tan^(-1)((sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))), pi lt x lt (3pi)/2 is :

intcosx/sqrt(1+cosx)dx

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

int(sqrt(1+cosx))/(1-cosx)dx=

int sqrt(1-cosx)dx

intcot^(-1)sqrt((1+cosx)/(1-cosx))dx=

Consider the function f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x)) then Q. If x in (pi, 2pi) then f(x) is

Prove that : tan^(-1)((cosx)/(1-sinx))-cot^(-1)(sqrt((1+cosx)/(1-cosx)))=(pi)/(4), x in (0, pi//2) .