Home
Class 12
MATHS
Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1...

Prove that `tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cot^(-1) ((sqrt(1+x) -sqrt(1-x))/(sqrt(1+x) +sqrt(1-x))) = pi/4 +1/2 cos^(-1) x

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2 cos^(-1)x , 0

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x+sqrt(1-x)))]=(pi)/(4)-(1)/(2)cos^(-1)x,quad -(1)/(sqrt(2))<=x<=1

tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=(pi)/(4)+(1)/(2)cos^(-1)x^(2)

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))],|x|<(1)/(2),x!=0

Prove that: tan^(^^)(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=pi/4-x/2, if pi

Solve for x:tan^(-1)[(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))]=beta