Home
Class 12
MATHS
Evaluate : cos(sin^(-1)(1/4)+sec^(-1)(4/...

Evaluate : `cos(sin^(-1)(1/4)+sec^(-1)(4/3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \cos(\sin^{-1}(1/4) + \sec^{-1}(4/3)) \), we can use the cosine addition formula and properties of inverse trigonometric functions. Here’s a step-by-step solution: ### Step 1: Identify the angles Let: - \( A = \sin^{-1}(1/4) \) - \( B = \sec^{-1}(4/3) \) ### Step 2: Use the cosine addition formula We can express \( \cos(A + B) \) using the cosine addition formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] ### Step 3: Calculate \( \cos A \) and \( \sin A \) Since \( A = \sin^{-1}(1/4) \): - By definition, \( \sin A = 1/4 \). - To find \( \cos A \), we use the identity \( \cos A = \sqrt{1 - \sin^2 A} \): \[ \cos A = \sqrt{1 - (1/4)^2} = \sqrt{1 - 1/16} = \sqrt{15/16} = \frac{\sqrt{15}}{4} \] ### Step 4: Calculate \( \cos B \) and \( \sin B \) Since \( B = \sec^{-1}(4/3) \): - By definition, \( \sec B = 4/3 \) implies \( \cos B = 3/4 \). - To find \( \sin B \), we use the identity \( \sin B = \sqrt{1 - \cos^2 B} \): \[ \sin B = \sqrt{1 - (3/4)^2} = \sqrt{1 - 9/16} = \sqrt{7/16} = \frac{\sqrt{7}}{4} \] ### Step 5: Substitute values into the cosine addition formula Now we substitute \( \cos A \), \( \sin A \), \( \cos B \), and \( \sin B \) into the formula: \[ \cos(A + B) = \left(\frac{\sqrt{15}}{4}\right) \left(\frac{3}{4}\right) - \left(\frac{1}{4}\right) \left(\frac{\sqrt{7}}{4}\right) \] \[ = \frac{3\sqrt{15}}{16} - \frac{\sqrt{7}}{16} \] \[ = \frac{3\sqrt{15} - \sqrt{7}}{16} \] ### Final Answer Thus, the value of \( \cos(\sin^{-1}(1/4) + \sec^{-1}(4/3)) \) is: \[ \frac{3\sqrt{15} - \sqrt{7}}{16} \]

To evaluate the expression \( \cos(\sin^{-1}(1/4) + \sec^{-1}(4/3)) \), we can use the cosine addition formula and properties of inverse trigonometric functions. Here’s a step-by-step solution: ### Step 1: Identify the angles Let: - \( A = \sin^{-1}(1/4) \) - \( B = \sec^{-1}(4/3) \) ### Step 2: Use the cosine addition formula ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos
  • JEE MAINS PREVIOUS YEAR

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate cos(sin^(-1)(4/5)+cos^(-1)(2/3))

Evaluate: (i) cot((sin^(-1)3)/(4)+(sec^(-1)4)/(3))( ii) sin(tan^(-1)x+(tan^(-1)1)/(x)) for x<0

cos(cos^(-1)(-1/4)+sin^(-1)(-1/4))=

Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]

Evaluate the following: sin^(-1)(sin(pi)/(4)) (ii) cos^(-1)(cos2(pi)/(3))tan^(-1)(tan(pi)/(3))

Evaluate int_(-1)^(1)sin^(5)x cos^(4)xdx

Evaluate sin ((1) / (2) cos ^ (- 1) ((4) / (5)))

Find the value of: i) sin^(-1)(sinpi/3) ii) cos^(-1)(cos(2pi)/3)) , iii) tan^(-1)(tanpi/4)

The value of sin^(-1)(cot(sin^(-1)((2-sqrt(3))/(4)+(cos^(-1)(sqrt(12)))/(4)+sec^(-1)sqrt(2))))(a)0( b) (pi)/(2)( c) (pi)/(3)( d) none of these

Find the value of sin((1)/(4)cos^(-1)((-1)/(9)))

RD SHARMA-INVERSE TRIGONOMETRIC FUNCTION-Solved Examples And Exercises
  1. Evaluate each of the following: tan("c o s e c"^(-1)(13)/5) (ii) ta...

    Text Solution

    |

  2. Evaluate: sin(cot^(-1)cos(tan^(-1)x)

    Text Solution

    |

  3. Evaluate : cos(sin^(-1)(1/4)+sec^(-1)(4/3))

    Text Solution

    |

  4. Evaluate: sin(cos^(-1)(3/5)+cos e c^(-1)(13)/5)

    Text Solution

    |

  5. Find the value of the expression sin[cot^(-1){cos(tan^-1(1))}]

    Text Solution

    |

  6. Prove that: sec^2(tan^(-1)2)+cos e c^2(cot^(-1)3)=15 and tan^2(s...

    Text Solution

    |

  7. Prove that: sec^2(tan^(-1)2)+cos e c^2(cot^(-1)3)=15 and tan^2(sec...

    Text Solution

    |

  8. Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) ...

    Text Solution

    |

  9. Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) ...

    Text Solution

    |

  10. If"sin"{cot^(-1)(x+1)}="cos"(tan^(-1)x), then find xdot

    Text Solution

    |

  11. Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)...

    Text Solution

    |

  12. Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)...

    Text Solution

    |

  13. If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[...

    Text Solution

    |

  14. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...

    Text Solution

    |

  15. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, show that x^4+y^4+z^4+4x^2y^2z^2=...

    Text Solution

    |

  16. If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha...

    Text Solution

    |

  17. Prove that: tan{pi/4+1/2\ cos^(-1)(a/b)}+tan{pi/4-1/2\ cos^(-1)(a/b)}=...

    Text Solution

    |

  18. Evaluate each of the following: sin(sin^(-1)(7/(25))) (ii) sin(cos^(...

    Text Solution

    |

  19. Evaluate each of the following: sin(sec^(-1)(17)/8) (ii) "c o s e c...

    Text Solution

    |

  20. Evaluate each of the following: (i)tan(cos^(-1)(8/(17))) (ii) cot(...

    Text Solution

    |