Home
Class 12
MATHS
Solve: cos(sin^(-1)x)=1/6...

Solve: `cos(sin^(-1)x)=1/6`

Text Solution

Verified by Experts

`Let \sin ^{-1}x= a`
`\implies x=\sin a`
`\implies x^{2}=\sin ^{2} a`
`\implies \cos ^{2} a=1-\sin ^{2} a=1`
`\implies \cos a=\sqrt{1-x^{2}}`
`\implies a=\cos ^{-1} \sqrt{1-x^{2}}`
We have, `\cos (\sin ^{-1} x)=\frac{1}{6}`
`\implies \cos a=\frac{1}{6} \text { where } \sin ^{-1} x=a`
...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos
  • JEE MAINS PREVIOUS YEAR

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

solve: cos(2sin^(-1)x)=(1)/(9)

Solve: cos{2sin^(-1)(-x)}=0

Solve: cos{2sin^(-1)(-x)}=0

Solve for x : cos(2sin^(-1)x)=1/3

Solve for x : i) cos(sin^(-1)x)=1/2 ii) tan^(-1)x=sin^(-1)1/sqrt(2) iii) sin^(-1)x-cos^(-1)x=pi/6

Solve the following equations : cos (sin^(-1) x) = 1/2

Solve: sin^(-1)x=(pi)/(6)+cos^(-1)x

Solve cos^(50)x-sin^(50)x=1

Solve cos^(-1)(sin(cos^(-1)x))=(pi)/(3)

solve cos {sin ^ (- 1) (- x)} = 0