Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)...

If `sin^(-1)x+sin^(-1)y=pi/3` and `cos^(-1)x-cos^(-1)y=pi/6` , find the values of `x` and `y` .

Text Solution

Verified by Experts

`cos ^{-1} x-cos ^{-1} y=frac{pi}{6}`

`implies frac{pi}{2}-sin ^{-1} x-frac{pi}{2}+sin ^{-1} y=frac{pi}{6} [therefore cos ^{-1} x=frac{pi}{2}-sin ^{-1} x]`

`implies -(sin ^{-1} x-sin ^{-1} y)=frac{pi}{6} `

`sin ^{-1} x-sin ^{-1} y=-frac{pi}{6}`

...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos
  • JEE MAINS PREVIOUS YEAR

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=

If sin^(-1)x+sin^(-1)y=pi//2 and cos^(-1)x-cos^(-1)y=0 , then values x and y are respectively

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to

If sin^(-1) x + sin^(-1)y = pi//2 and cos^(-1) x - cos^(-1) y = 0 , then value x and y respectively

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) and cos^(-1)x-cos^(-1)y=-(pi)/(3) then the number of values of (x,y) is

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :