Home
Class 12
MATHS
Evaluate: cos(sin^(-1)(3/5)+sin^(-1)(5/(...

Evaluate: `cos(sin^(-1)(3/5)+sin^(-1)(5/(13)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \cos(\sin^{-1}(\frac{3}{5}) + \sin^{-1}(\frac{5}{13})) \), we can use the formula for the cosine of the sum of two angles. The formula states: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] where \( A = \sin^{-1}(\frac{3}{5}) \) and \( B = \sin^{-1}(\frac{5}{13}) \). ### Step 1: Find \( \cos A \) and \( \sin A \) 1. Since \( A = \sin^{-1}(\frac{3}{5}) \), we have: \[ \sin A = \frac{3}{5} \] To find \( \cos A \), we use the identity \( \cos^2 A + \sin^2 A = 1 \): \[ \cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \[ \cos A = \sqrt{\frac{16}{25}} = \frac{4}{5} \] ### Step 2: Find \( \cos B \) and \( \sin B \) 2. Since \( B = \sin^{-1}(\frac{5}{13}) \), we have: \[ \sin B = \frac{5}{13} \] To find \( \cos B \), we again use the identity: \[ \cos^2 B = 1 - \sin^2 B = 1 - \left(\frac{5}{13}\right)^2 = 1 - \frac{25}{169} = \frac{144}{169} \] Thus, \[ \cos B = \sqrt{\frac{144}{169}} = \frac{12}{13} \] ### Step 3: Substitute into the cosine sum formula 3. Now substitute \( \sin A \), \( \cos A \), \( \sin B \), and \( \cos B \) into the cosine sum formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Substituting the values we found: \[ \cos(A + B) = \left(\frac{4}{5}\right)\left(\frac{12}{13}\right) - \left(\frac{3}{5}\right)\left(\frac{5}{13}\right) \] ### Step 4: Calculate the expression 4. Calculate each term: \[ \cos(A + B) = \frac{48}{65} - \frac{15}{65} = \frac{33}{65} \] ### Final Answer Thus, the value of \( \cos(\sin^{-1}(\frac{3}{5}) + \sin^{-1}(\frac{5}{13})) \) is: \[ \boxed{\frac{33}{65}} \]

To evaluate the expression \( \cos(\sin^{-1}(\frac{3}{5}) + \sin^{-1}(\frac{5}{13})) \), we can use the formula for the cosine of the sum of two angles. The formula states: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] where \( A = \sin^{-1}(\frac{3}{5}) \) and \( B = \sin^{-1}(\frac{5}{13}) \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos
  • JEE MAINS PREVIOUS YEAR

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate cos(sin^(-1)(4/5)+cos^(-1)(2/3))

Evaluate: sin(cos^(-1)(3)/(5)+csc^(-1)(13)/(5))

Evaluate sin[2cos^(-1)(-3/5)] .

Find the value of cot^(-1)(3)/(4)+sin^(-1)(5)/(13)

Evaluate (i) sin (cos^(-1) (3/5))

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)

Evaluate: sin^(-1)(sin(3 pi)/(5))

Evaluate sin[cos^(-1) ((3)/(5))]

Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

Evaluate: cos{sin^(-1)(-(5)/(13))}( ii) cot{sin^(-1)(-(7)/(25))}

RD SHARMA-INVERSE TRIGONOMETRIC FUNCTION-Solved Examples And Exercises
  1. sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x , then roots of the equa...

    Text Solution

    |

  2. Solve the equation sin^(-1)6x+sin^(-1)6sqrt(3)x=(-pi)/2dot

    Text Solution

    |

  3. Evaluate: cos(sin^(-1)(3/5)+sin^(-1)(5/(13)))

    Text Solution

    |

  4. Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

    Text Solution

    |

  5. Prove that : tan^(-1)((63)/(16))=sin^(-1)(5/(13))+cos^(-1)(3/5)

    Text Solution

    |

  6. Prove that:(9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2sqrt(2))/3)

    Text Solution

    |

  7. solve:sin^-1x+sin^-1 2x=pi/3

    Text Solution

    |

  8. Prove that: tan^(-1)4/5+cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

    Text Solution

    |

  9. Show that sin^(-1)(3/5)-sin^(-1)(8/(17))=cos^(-1)((84)/(85)) .

    Text Solution

    |

  10. If cos^(-1)x/a+cos^(-1)y/b=alpha, prove that (x^2)/(a^2)-2(x y)/(a b)c...

    Text Solution

    |

  11. If cos^(-1)x+cos^(-1)y+cos^(-1)=pi, prove that x^2+y^2+z^2+2x y z=1.

    Text Solution

    |

  12. If cos^(-1) (x/2) + cos^(-1) (y/3) =alpha then prove that 9x^2-12xycos...

    Text Solution

    |

  13. Solve the equation: cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/a)

    Text Solution

    |

  14. cos^(- 1)xsqrt(3)+cos^(- 1)x=pi/2

    Text Solution

    |

  15. Prove that cos^(-1)(4/5)cos^(-1)((12)/(13))=cos^(-1)((33)/(65))

    Text Solution

    |

  16. Evaluate: sin(2\ sin^(-1)0. 6)

    Text Solution

    |

  17. Evaluate: sin(3\ sin^(-1)0. 4)

    Text Solution

    |

  18. Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3...

    Text Solution

    |

  19. Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

    Text Solution

    |

  20. Evaluate: tan(2tan^(-1)(1/5))

    Text Solution

    |