Home
Class 12
MATHS
Show that sin^(-1)(3/5)-sin^(-1)(8/(17))...

Show that `sin^(-1)(3/5)-sin^(-1)(8/(17))=cos^(-1)((84)/(85))` .

Text Solution

Verified by Experts

The correct Answer is:
Proved

Let `\sin ^{-1}(3 / 5)=x` and `\sin ^{-1}(8 / 17)=y`

Therefore `\sin x=3 / 5` and siny `=8 / 17`

Now, `.\cos x=\sqrt{( 1-\sin ^{2} x)}=\sqrt{(1-(3 / 5)^{2})}=\sqrt{(1-9 / 25)}=4 / 5`

and `\cos y=\sqrt{(1-\sin ^{2} y)}=\sqrt{(1-(8 / 17)^{2})}=\sqrt{(1-64 / 289)}=15 / 17`

We have `\cos (x-y)=\cos x \cos y+\sin x \sin y`
$$ \begin{aligned} &=4/5 \times 15/17 + 3/5 \times 8/17 = 60/85 + 24/85 = 84/85 \\ ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos
  • JEE MAINS PREVIOUS YEAR

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=

Show that : sin^(-1) (3/5) + sin^(-1) (8/17) = cos^(-1) (36/85) .

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Prove that sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=cos^(-1)((36)/(85))

Prove each of the following sin^(-1)((3)/(5))+sin^(-1)((8)/(17))=sin^(-1)((77)/(85))

Prove each of the following sin^(-1)((3)/(5))+sin^(-1)((8)/(17))=sin^(-1)((77)/(85))

Show that : sin^(-1)(8/(17))+sin^(-1)(3/5)=sin^(-1)(77/85)

Prove that sin^(-1) . 3/5 - sin ^(-1) . 8/17 = cos^(-1) . 84/85

Prove that : sin^(-1)(8/(17))+sin^(-1)(3/5)=sin^(-1)((77)/(85))=tan^(-1)((77)/(36))

Show that "cos"^(-1) 4/5+"sin"^(-1) 15/17=(pi)/2+"cos"^(-1)84/85