Home
Class 12
MATHS
Prove that cos^(-1)(4/5)cos^(-1)((12)/(1...

Prove that `cos^(-1)(4/5)cos^(-1)((12)/(13))=cos^(-1)((33)/(65))`

Text Solution

Verified by Experts

Let `\cos ^{-1} \frac{4}{5}=x`. Then, `\cos x=\frac{4}{5} \Rightarrow \sin x=\sqrt{1-(\frac{4}{5})^{2}}=\frac{3}{5}`

$$ \begin{aligned} &\therefore \tan x=\frac{3}{4} \Rightarrow x=\tan ^{-1} \frac{3}{4} \\ &\therefore \cos ^{-1} \frac{4}{5}-\tan ^{-1} \frac{3}{4} \end{aligned} $$ Now let `\cos ^{\wedge}(-1) \frac{12}{13}=y` Then `\cos y=\frac{12}{13} \Rightarrow \sin y=\frac{5}{13}` ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos
  • JEE MAINS PREVIOUS YEAR

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

cos^(-1)((12)/(13))+sin^(-1)((3)/(5)) =

Prove that 2sin^(-1)((3)/(5))-cos^(-1)((5)/(13))=cos^(-1)((323)/(325))

Prove that cos^(-1)(3/5) + cos^(-1) (12/13) + cos^(-1)( 63/65) =pi/2 .

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that sin^(-1)((4)/(5))+tan^(-1)((5)/(12))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that cos^(-1)((4)/(5))=tan^(-1)((3)/(4))

cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((12)/(5))

Prove that: tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)