Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2...

If `sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2` , then write the value of `x+y+z` .

Text Solution

AI Generated Solution

To solve the equation \( \sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2} \) and find the value of \( x + y + z \), we can follow these steps: ### Step 1: Understand the range of the inverse sine function The function \( \sin^{-1}x \) (or arcsin) has a range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). Therefore, the maximum value of \( \sin^{-1}x \) is \( \frac{\pi}{2} \), which occurs when \( x = 1 \). ### Step 2: Analyze the equation Given that \( \sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2} \), we can deduce that each term \( \sin^{-1}x \), \( \sin^{-1}y \), and \( \sin^{-1}z \) must be at their maximum value of \( \frac{\pi}{2} \) to sum to \( \frac{3\pi}{2} \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos
  • JEE MAINS PREVIOUS YEAR

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

Q.if sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), then

If sin^(-1) x + sin^(-1) y + sin^(-1) z = (3pi)/2 ",then find the value of " Sigma ((x^(101) + y ^(101))(x^(202)+y^(202)))/((x^(303)+y^(303))(x^(404)+y^(404)))

If sin ^(-1) x + sin ^(-1) y + sin ^(-1) z = (3pi)/(2) then the value of x ^(100) + y ^(100) + z ^(100) - (3)/( x ^(101) + y^(101) + z ^(101)) is

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) then the value of x^(100)+y^(100)+z^(100)-(3)/(x^(101)+y^(101)+z^(101))

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 then the value of x^(100)-y^(100)-z^(100)-12/(x^(101)-y^(101)-z^(101))=

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2) , then the value of x^(2)+y^(2)+z^(2)+2xyz is equal to