Home
Class 12
MATHS
If x >1 , then write the value of sin...

If `x >1` , then write the value of `sin^(-1)((2x)/(1+x^2))` in terms of `tan^(-1)x`

Text Solution

Verified by Experts

`sin^(-1)((2x)/(1+x^2))` an d let `x=tan theta`
`sin^(-1)((2 tan theta)/(1+tan theta))`
`sin^(-1)(sin 2 theta)`
`2 theta`
Let `x=tan theta` and `theta=tan^(-1)x`
`2 tan^(-1)x=>pi-2tan^(-1)x`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|1401 Videos
  • JEE MAINS PREVIOUS YEAR

    RD SHARMA|Exercise EXAMPLE|1 Videos

Similar Questions

Explore conceptually related problems

If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms of tan^(-1)x

If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

Write the value of tan^(-1)(1/x) for x<0 in terms of cot^(-1)(x) .

Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

Differentiate sin^(-1)((2x)/(1+2x)) with to tan^(-1)x,-1

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to