Home
Class 12
MATHS
Let A=[(0,-tan(alpha/2)),(tan(alpha/2),0...

Let `A=[(0,-tan(alpha/2)),(tan(alpha/2),0)] and I` be the identity matrix of order 2. Show that `I+A=(I-A)[cosalpha-sin alpha sin alpha cosalpha]`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(0,-tan(alpha//2)),(tan(alpha//2),0)] and I is a 2xx2 unit matrix, prove that I+A=(I-A)[(cosalpha,-sinalpha),(sinalpha,cosalpha)]

Prove that (1-cosalpha)/sinalpha=tan(alpha/2)

If A=[[0,-tan alpha2,tan alpha2,tan alpha]] and I is 2xx2 unit matrix,then (I-A)[[cos alpha,sin alphasin alpha,sin alphasin alpha,sin alpha]] is (a) these

If A=[[cosalpha, -sin alpha] , [sin alpha, cos alpha]] then A+A'=I then alpha=

A=[[0,-tan((alpha)/(2))tan((alpha)/(2)),0]]then(I-A)[[cos alpha,-sin alphasin alpha,cos alpha

If A=,[[0,-tan((alpha)/(2))]tan((alpha)/(2)),0]], then I+A=(I-A)[[cos alpha,-sin alphasin alpha,cos alpha]]

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A^(2)=[{:(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha) :}].

If A=[[cosalpha, sin alpha] , [-sin alpha, cos alpha]] and A^(-1)=A' then alpha=