Home
Class 12
MATHS
Let F(x)=[cosx-sinx0sinxcosx0 0 0 1] . S...

Let `F(x)=[cosx-sinx0sinxcosx0 0 0 1]` . Show that `F(x)\ F(y)=F(x+y)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If F(x)=[cosx-sinx0sinxcosx0 0 0 1] , show that F(x)" "F(y)" "=" "F(x" "+" "y) .

If F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] Show that F(x)F(y)=F(x+y)

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)

If F(x)=[{:(cosx,-sinx,0),(six,cosx,0),(0,0,1):}] , show that F(x).F(y)=F(x+y).

Let f(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)], then (A) (f(x))^2=-I (B) f(x+y)=f(x),f(y) (C) f(x)^-1=f(-x) (D) f(x)^-1=f(x)

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

f(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] Statement 1: f(x) is inverse of f(-x) Statement 2: f(x).f(y) = f(x+y)

F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] and G(x)=[[cosx,0,sinx],[0,1,0],[-sinx,0,cosx]], then [F(x)G(y)]^(-1) is equal to (A) F(-x)G(-y) (B) F(x-1)G(y-1) (C) G(-y)F(-x) (D) G(y^(-1))F(x^(-1))