Home
Class 12
MATHS
Compute the elements a(43) and a(22) of ...

Compute the elements `a_(43)` and `a_(22)` of the matrix: `A=[(0 ,1, 0),( 2, 0 ,2 ),(0,3,2),(4 ,0, 4)] [(2,-1),(-3, 2),( 4, 3)][(0, 1,-1, 2,-2 ),(3,-3, 4,-4 ,0)]`

Text Solution

Verified by Experts

`A=[(0 ,1, 0),( 2, 0 ,2 ),(0,3,2),(4 ,0, 4)] [(2,-1),(-3, 2),( 4, 3)][(0, 1,-1, 2,-2 ),(3,-3, 4,-4 ,0)]`
`=>A=[(0 ,1, 0),( 2, 0 ,2 ),(0,3,2),(4 ,0, 4)][(0-3,2+3,-2-4,4+4,-4-0),(0+6,-3-6,3+8,-6-8,6+0),(0+9,4-9,-4+12,8-12,-8+0)]`
`=>A=[(0 ,1, 0),( 2, 0 ,2 ),(0,3,2),(4 ,0, 4)][(-3,5,-6,8,-4),(6,-9,11,-14,6),(9,-5,8,-4,-8)]`
`=>A=[(0+6+0,0-9-0,0+11+0,0-14-0,0+6-0),(-6+0+18,10-0-10,-12+0+16,16-0-8,-8+0-16),(0+18+18,0-27-10,0+33+16,0-42-8,0+18-16),(-12+0+36,20-0-20,-24+0+32,32-0-16,-16+0-32)]`
`=>A=[(6,-9,11,-14,6),(12,0,4,8,-24),(36,-37,49,-50,2),(24,0,8,16,-48)]`
so,`a_(43)=8` and `a_(22)=0`
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B =[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)] , find PQ.

Rank of the matrix [[3,0,2], [-1,1,0],[5,2,3]] is (1) 1 (2) 2 (3) 3 (4) 4

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

The element in the second row and third column of the matrix [(4,5,-6),(3,-4,3),(2,1,0)] is

If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I_3 .

RD SHARMA-ALGEBRA OF MATRICES-Solved Examples And Exercises
  1. For the following matrices verify the distributivity of matrix multi...

    Text Solution

    |

  2. If A=[(1, 0,-2 ),(3,-1, 0),(-2, 1, 1)] , B=[(0 ,5,-4),(-2, 1 ,3),(-1, ...

    Text Solution

    |

  3. Compute the elements a(43) and a(22) of the matrix: A=[(0 ,1, 0),( 2, ...

    Text Solution

    |

  4. If A=[(0 ,1 ,0),( 0, 0, 1),(p, q ,r)] and I is the identity matrix o...

    Text Solution

    |

  5. If omega is a complex cube root of unity, show that ([(1,omega,omega...

    Text Solution

    |

  6. If A=[(2,-3,-5),(-1 ,4 ,5),( 1,-3,-4)] , show that A^2=A .

    Text Solution

    |

  7. If A=[(4,-1,-4 ),(3, 0,-4),( 3,-1,-3)] , show that A^2=I3

    Text Solution

    |

  8. If [1\ \ 1\ \ x][1 0 2 0 2 1 2 1 0][1 1 1]=0 , find xdot

    Text Solution

    |

  9. If [(2,3),(5,7)][(1,-3),(-2,4)]=[(-4,6),(-9,x)] , find xdot

    Text Solution

    |

  10. If [(x,4,1)][(2,1,2),(1,0,2),(0,2,-4)][(x),(4),(-1)]=0 , find xdot

    Text Solution

    |

  11. If [(1, -1,x)][(0 ,1,-1),( 2 ,1 ,3),( 1 ,1 ,1)][(0),( 1),( 1)]=0 , fin...

    Text Solution

    |

  12. If A=[(3,-2),( 4,-2)] and I=[(1 ,0),( 0 ,1)] , then prove that A^2-A+2...

    Text Solution

    |

  13. If A=[(3 ,1),(-1, 2)] and I=[(1, 0), (0 ,1)] , then find lambda so tha...

    Text Solution

    |

  14. If A=[[3 ,1],[-1, 2]] , show that A^2-5A+7I2=O .

    Text Solution

    |

  15. If A=[(2, 3),(-1 ,0)] , show that A^2-2A+3I2=O .

    Text Solution

    |

  16. Show that the matrix A=[(2, 3), (1, 2)] satisfies the equation A^3-4A...

    Text Solution

    |

  17. Show that the matrix A=[(5, 3), (12 ,7)] is a root of the equation A...

    Text Solution

    |

  18. If A=[(3,-5),(-4, 2)] , find A^2-5A-14 Idot

    Text Solution

    |

  19. If A=[(3, 1),(-1, 2)] , show that A^2-5A+7I=O . Use this to find A^4

    Text Solution

    |

  20. If A=[(3,-2) ,(4,-2)] , find k such that A^2-k A-2I2=0 .

    Text Solution

    |