Home
Class 12
MATHS
If omega is a complex cube root of uni...

If `omega` is a complex cube root of unity, show that `([(1,omega,omega^2),(omega,omega^2 ,1),(omega^2, 1,omega)]+[(omega,omega^2 ,1),(omega^2 ,1,omega),(omega,omega^2 ,1)])[(1),(omega),(omega^2)]=[(0),( 0 ),(0)]`

Text Solution

Verified by Experts

Given ,
`([(1,omega,omega^2),(omega,omega^2 ,1),(omega^2, 1,omega)]+[(omega,omega^2 ,1),(omega^2 ,1,omega),(omega,omega^2 ,1)])[(1),(omega),(omega^2)]=[(0),( 0 ),(0)]`
`(LHS)=`
`([(1,omega,omega^2),(omega,omega^2 ,1),(omega^2, 1,omega)]+[(omega,omega^2 ,1),(omega^2 ,1,omega),(omega,omega^2 ,1)])[(1),(omega),(omega^2)]`
`=[(1+omega,omega+omega^2,omega^2+1),(omega+omega^2,omega^2+1,1+omega),(omega^2+omega,1+omega^2,omega+1)][(1),(omega),(omega^2)]`
`=[(-omega^2,-1,-omega),(-1,-omega,-omega^2),(-1,-omega,omega^2)][(1),(omega),(omega^2)]`
`=[(- omega^2-omega-omega^3),(-1-omega^2-omega^4),(-1-omega-omega^4)]`
`=[(-omega(1+omega+omega^2)),(-1-omega^2-omega^3omega),(-1-omega^2-omega^3omega)]`
`=[(0),(-1-omega^2-omega),(-1-omega^2-omega)]`
`=[(0),( 0 ),(0)]`
Hence `(LHS=RHS)`
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega be an imaginary cube root of unity,show that (1+omega-omega^(2))(1-omega+omega^(2))=4

if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-I,1,omega^2],[omega,-omega^2,1]|

RD SHARMA-ALGEBRA OF MATRICES-Solved Examples And Exercises
  1. Compute the elements a(43) and a(22) of the matrix: A=[(0 ,1, 0),( 2, ...

    Text Solution

    |

  2. If A=[(0 ,1 ,0),( 0, 0, 1),(p, q ,r)] and I is the identity matrix o...

    Text Solution

    |

  3. If omega is a complex cube root of unity, show that ([(1,omega,omega...

    Text Solution

    |

  4. If A=[(2,-3,-5),(-1 ,4 ,5),( 1,-3,-4)] , show that A^2=A .

    Text Solution

    |

  5. If A=[(4,-1,-4 ),(3, 0,-4),( 3,-1,-3)] , show that A^2=I3

    Text Solution

    |

  6. If [1\ \ 1\ \ x][1 0 2 0 2 1 2 1 0][1 1 1]=0 , find xdot

    Text Solution

    |

  7. If [(2,3),(5,7)][(1,-3),(-2,4)]=[(-4,6),(-9,x)] , find xdot

    Text Solution

    |

  8. If [(x,4,1)][(2,1,2),(1,0,2),(0,2,-4)][(x),(4),(-1)]=0 , find xdot

    Text Solution

    |

  9. If [(1, -1,x)][(0 ,1,-1),( 2 ,1 ,3),( 1 ,1 ,1)][(0),( 1),( 1)]=0 , fin...

    Text Solution

    |

  10. If A=[(3,-2),( 4,-2)] and I=[(1 ,0),( 0 ,1)] , then prove that A^2-A+2...

    Text Solution

    |

  11. If A=[(3 ,1),(-1, 2)] and I=[(1, 0), (0 ,1)] , then find lambda so tha...

    Text Solution

    |

  12. If A=[[3 ,1],[-1, 2]] , show that A^2-5A+7I2=O .

    Text Solution

    |

  13. If A=[(2, 3),(-1 ,0)] , show that A^2-2A+3I2=O .

    Text Solution

    |

  14. Show that the matrix A=[(2, 3), (1, 2)] satisfies the equation A^3-4A...

    Text Solution

    |

  15. Show that the matrix A=[(5, 3), (12 ,7)] is a root of the equation A...

    Text Solution

    |

  16. If A=[(3,-5),(-4, 2)] , find A^2-5A-14 Idot

    Text Solution

    |

  17. If A=[(3, 1),(-1, 2)] , show that A^2-5A+7I=O . Use this to find A^4

    Text Solution

    |

  18. If A=[(3,-2) ,(4,-2)] , find k such that A^2-k A-2I2=0 .

    Text Solution

    |

  19. If A=[(1, 0),(-1 ,7)] , find k such that A^2-8A+k I=O .

    Text Solution

    |

  20. If A=[(1 ,2 ),(2, 1)] and f(x)=x^2-2x-3 , show that f(A)=O .

    Text Solution

    |