Home
Class 12
MATHS
Show that the matrix A=[(2, 3), (1, 2)] ...

Show that the matrix `A=[(2, 3), (1, 2)]` satisfies the equation `A^3-4A^2+A=O` .

Text Solution

AI Generated Solution

To show that the matrix \( A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \) satisfies the equation \( A^3 - 4A^2 + A = O \) (where \( O \) is the null matrix), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

Show that the matrix A=[[2,31,2]] satisfies the equation A^(2)-4A+I=0

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-4A+I=O and hence, find A^(-1) .

show that matrix A = [(3,4),(1,2)] satisfies the equation A^2-5A+2I=0

Show that thematrix A= [{:(,2,3),(,1,2):}] satisfies the equations A^(2)-4A+I=0 where I is 2 xx 2 identity matrix and O is 2 xx 2 zero matrix. Using the equations. Find A^(-1) .

Find the inverse of each of the matrices given below : Show that the matrix A=[(-8,5),(2,4)] satisfies the equation A^(2)+4A-42I=0 and hence find A^(-1) .

Show that the matrix,A=[10-2-2-12341] satisfies the equation,A^(3)-A^(2)-3A-I_(3)=O. Hence, find A^(-1).

Show that the matrix A=[122212221] satisfies the equation A^(2)-4A-5I_(3)=O and hence find A^(-1) .

show that the matrix A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] is idempotent.

Show that A =[{:(5,3),(-1,-2):}] satisfies the equation A^(2)-3A-7I=0 and hence find the value of A^(-1)

Show that A=[53-1-2] satisfies the equation x^(2)-3x-7=0 .Thus,find A^(-1)

RD SHARMA-ALGEBRA OF MATRICES-Solved Examples And Exercises
  1. If A=[[3 ,1],[-1, 2]] , show that A^2-5A+7I2=O .

    Text Solution

    |

  2. If A=[(2, 3),(-1 ,0)] , show that A^2-2A+3I2=O .

    Text Solution

    |

  3. Show that the matrix A=[(2, 3), (1, 2)] satisfies the equation A^3-4A...

    Text Solution

    |

  4. Show that the matrix A=[(5, 3), (12 ,7)] is a root of the equation A...

    Text Solution

    |

  5. If A=[(3,-5),(-4, 2)] , find A^2-5A-14 Idot

    Text Solution

    |

  6. If A=[(3, 1),(-1, 2)] , show that A^2-5A+7I=O . Use this to find A^4

    Text Solution

    |

  7. If A=[(3,-2) ,(4,-2)] , find k such that A^2-k A-2I2=0 .

    Text Solution

    |

  8. If A=[(1, 0),(-1 ,7)] , find k such that A^2-8A+k I=O .

    Text Solution

    |

  9. If A=[(1 ,2 ),(2, 1)] and f(x)=x^2-2x-3 , show that f(A)=O .

    Text Solution

    |

  10. If A=[(2, 3),( 1, 2)] and I=[(1, 0),( 0, 1)] , then find lambda,mu ...

    Text Solution

    |

  11. Find the value of x for which the matrix product [(2, 0, 7),( 0, ...

    Text Solution

    |

  12. Solve the matrix equations: [(0, 2, 1)][(1, 2, 0),( 2 ,0 ,1 ),(1 ,0...

    Text Solution

    |

  13. Solve the matrix equations: [(x,-5,-1)][(1, 0, 2) ,( 0,2 ,1),( 2, 0,...

    Text Solution

    |

  14. If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I3 .

    Text Solution

    |

  15. If f(x)=x^2-2x , find f(A), where A=[(0, 1, 2),( 4 ,5, 0 ),(0, 2 ,3)...

    Text Solution

    |

  16. If f(x)=x^3+4x^2-x , find f(A) , where A=[(0 ,1, 2 ),(2,-3 ,0),( 1,-...

    Text Solution

    |

  17. If A=[(1 ,0, 2), (0, 2, 1), (2, 0, 3)] , then show that A is a root of...

    Text Solution

    |

  18. If A=[(1, 2 ,2 ),(2 ,1 ,2),( 2 ,2, 1)] , then prove that A^2-4A-5I=O ...

    Text Solution

    |

  19. If A=[(3, 2, 0),( 1, 4 ,0 ),(0 ,0 ,5)] , show that A^2-7A+10 I3=O .

    Text Solution

    |

  20. Without using the concept of inverse of a matrix, find the matrix [...

    Text Solution

    |