Home
Class 12
MATHS
If A=[(2, 3),( 1, 2)] and I=[(1, 0),( 0...

If `A=[(2, 3),( 1, 2)]` and `I=[(1, 0),( 0, 1)]` , then find `lambda,mu` so that `A^2=lambdaA+muI`

Text Solution

AI Generated Solution

To solve for \( \lambda \) and \( \mu \) such that \( A^2 = \lambda A + \mu I \), we will follow these steps: ### Step 1: Calculate \( A^2 \) Given the matrix \( A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \), we need to compute \( A^2 \) by multiplying \( A \) with itself. \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)] , then find 'k' so that k^(2)=5A-21I .

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .

A= [{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

If A=[[0, 3], [2, 0]] and A^(-1)=lambda(adjA) , then lambda=

If A=[{:(1,0),(-1,7):}]" and "B=[{:(0,4),(-1,7):}] , find (3A^(2)-2B+I).

if A=[(1,2),(2,3)] and A^(2) -lambdaA-l_(2)=O, then lambda is equal to

RD SHARMA-ALGEBRA OF MATRICES-Solved Examples And Exercises
  1. If A=[(1, 0),(-1 ,7)] , find k such that A^2-8A+k I=O .

    Text Solution

    |

  2. If A=[(1 ,2 ),(2, 1)] and f(x)=x^2-2x-3 , show that f(A)=O .

    Text Solution

    |

  3. If A=[(2, 3),( 1, 2)] and I=[(1, 0),( 0, 1)] , then find lambda,mu ...

    Text Solution

    |

  4. Find the value of x for which the matrix product [(2, 0, 7),( 0, ...

    Text Solution

    |

  5. Solve the matrix equations: [(0, 2, 1)][(1, 2, 0),( 2 ,0 ,1 ),(1 ,0...

    Text Solution

    |

  6. Solve the matrix equations: [(x,-5,-1)][(1, 0, 2) ,( 0,2 ,1),( 2, 0,...

    Text Solution

    |

  7. If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I3 .

    Text Solution

    |

  8. If f(x)=x^2-2x , find f(A), where A=[(0, 1, 2),( 4 ,5, 0 ),(0, 2 ,3)...

    Text Solution

    |

  9. If f(x)=x^3+4x^2-x , find f(A) , where A=[(0 ,1, 2 ),(2,-3 ,0),( 1,-...

    Text Solution

    |

  10. If A=[(1 ,0, 2), (0, 2, 1), (2, 0, 3)] , then show that A is a root of...

    Text Solution

    |

  11. If A=[(1, 2 ,2 ),(2 ,1 ,2),( 2 ,2, 1)] , then prove that A^2-4A-5I=O ...

    Text Solution

    |

  12. If A=[(3, 2, 0),( 1, 4 ,0 ),(0 ,0 ,5)] , show that A^2-7A+10 I3=O .

    Text Solution

    |

  13. Without using the concept of inverse of a matrix, find the matrix [...

    Text Solution

    |

  14. Find the matrix A such that : [(1 ,0 ),(0 ,1)]A=[(3 ,3 ,5 ),(1, 0 ,1)]

    Text Solution

    |

  15. Find the matrix A such that : [2, 1, 3][(-1,0,-1),(-1,1 ,0 ),(0 ,1, 1...

    Text Solution

    |

  16. Find a 2xx2 matrix A such that A[(1,-2),( 1, 4)]=6I2 .

    Text Solution

    |

  17. If A=[(0, 0), (4, 0)] , find A^(16) .

    Text Solution

    |

  18. If A=[(0,-x),(x,0)] , B=[(0 ,1 ),(1 ,0)] and x^2=-1 , then show tha...

    Text Solution

    |

  19. If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I...

    Text Solution

    |

  20. If A=[(3,-5),(-4, 2)] , then find A^2-5A-14 I .

    Text Solution

    |