Home
Class 12
MATHS
Find the value of x for which the matri...

Find the value of `x` for which the matrix product `[(2, 0, 7),( 0, 1, 0),( 1,-2, 1)][(-x, 14 x,7x),(0, 1, 0),(x,-4x,-2x)]` equal to an identity matrix.

Text Solution

Verified by Experts

Given that,
`[(2, 0,7),(0,1,0),(1,- 2,1)][(-x,14x,7x),(0,1,0),(x,-4x,-2x)]=[(1,0,0),(0,1,0),(0,0,1)]`
`implies [(-2x+7x,28x-28x,14x-14x),(0,1,0),(-x+x,14x-2-4x,7x-2x)]= [(1,0,0),(0,1,0),(0,0,1)]`
`implies [(5x,0,0),(0,1,0),(0,10x-2,5x)]= [(1,0,0),(0,1,0),(0,0,1)]`
`implies x=1/5`
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

The value of x for which the metrix product {:[(2,0,7),(0,1,0),(1,-2,1)][(-x,14x,7x),(0,1,0),(x,-4x,-2x)]:} equal an identity matrix, is

Find the matrix X for which: [(3, 2), (7, 5)]X[(-1, 1),(-2, 1)]=[(2,-1),( 0, 4)] .

Find the matrix x for which [(3,2),(7,5)]xx[(-1,1),(-2,1)]=[(2,-1),(0,4)]

For what value of 'x', is the matrix , A=[(0,1,-2),(-1,0,3),(x,-3,0)] a skew - symmetric matrix

For what value of x, is the matrix A=[(0,1,-2),(-1,x,-3),(2,3,0)] a skew-symmetric matrix

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

The sum of the values of x so that the matrix ([2,2,1],[1,3,1],[1,2,2])-x([1,0,0],[0,1,0],[0,0,1]) is singular,is

RD SHARMA-ALGEBRA OF MATRICES-Solved Examples And Exercises
  1. If A=[(1 ,2 ),(2, 1)] and f(x)=x^2-2x-3 , show that f(A)=O .

    Text Solution

    |

  2. If A=[(2, 3),( 1, 2)] and I=[(1, 0),( 0, 1)] , then find lambda,mu ...

    Text Solution

    |

  3. Find the value of x for which the matrix product [(2, 0, 7),( 0, ...

    Text Solution

    |

  4. Solve the matrix equations: [(0, 2, 1)][(1, 2, 0),( 2 ,0 ,1 ),(1 ,0...

    Text Solution

    |

  5. Solve the matrix equations: [(x,-5,-1)][(1, 0, 2) ,( 0,2 ,1),( 2, 0,...

    Text Solution

    |

  6. If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I3 .

    Text Solution

    |

  7. If f(x)=x^2-2x , find f(A), where A=[(0, 1, 2),( 4 ,5, 0 ),(0, 2 ,3)...

    Text Solution

    |

  8. If f(x)=x^3+4x^2-x , find f(A) , where A=[(0 ,1, 2 ),(2,-3 ,0),( 1,-...

    Text Solution

    |

  9. If A=[(1 ,0, 2), (0, 2, 1), (2, 0, 3)] , then show that A is a root of...

    Text Solution

    |

  10. If A=[(1, 2 ,2 ),(2 ,1 ,2),( 2 ,2, 1)] , then prove that A^2-4A-5I=O ...

    Text Solution

    |

  11. If A=[(3, 2, 0),( 1, 4 ,0 ),(0 ,0 ,5)] , show that A^2-7A+10 I3=O .

    Text Solution

    |

  12. Without using the concept of inverse of a matrix, find the matrix [...

    Text Solution

    |

  13. Find the matrix A such that : [(1 ,0 ),(0 ,1)]A=[(3 ,3 ,5 ),(1, 0 ,1)]

    Text Solution

    |

  14. Find the matrix A such that : [2, 1, 3][(-1,0,-1),(-1,1 ,0 ),(0 ,1, 1...

    Text Solution

    |

  15. Find a 2xx2 matrix A such that A[(1,-2),( 1, 4)]=6I2 .

    Text Solution

    |

  16. If A=[(0, 0), (4, 0)] , find A^(16) .

    Text Solution

    |

  17. If A=[(0,-x),(x,0)] , B=[(0 ,1 ),(1 ,0)] and x^2=-1 , then show tha...

    Text Solution

    |

  18. If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I...

    Text Solution

    |

  19. If A=[(3,-5),(-4, 2)] , then find A^2-5A-14 I .

    Text Solution

    |

  20. If P(x)=[cosxsinx-sinxcosx] , then show that P(x)\ P(y)=P(x+y)=P(y)\ P...

    Text Solution

    |