Home
Class 12
MATHS
If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] ...

If `A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)]` , then verify that `A^2+A=A(A+I)` , where `I` is the identity matrix.

Text Solution

Verified by Experts

Given that,
`A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)]`
`implies A^2= [(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)]xx [(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)]`
`implies A^2= [(1,-3,-6),(4,4,0),(2,2,4)] `
L.H.S.`=A^2+A= [(1,-3,-6),(4,4,0),(2,2,4)]+ [(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)]`
`=[(2,-3,-9),(6,5,3),(2,3,5)]`
R.H.S.`=A(A+I)= [(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)]( [(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)]+[(1,0,0),(0,1,0),(0,0,1)])`
`= [(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)][(2,0,-3),(2,2,3),(0,1,2)]`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

If A=[[5,2],[7,3]] ,then verify that A.adj A=|A|I, where I is the identity matrix of order

If A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying the equation A A^T=9I , where I is 3xx3 identity matrix, then the ordered pair (a,b) is equal to : (A) (2,-1) (B) (-2,1) (C) (2, 1) (D) (-2,-1)

If A=[(1, -2, 1),(0, 1 ,-1),(3, -1, 1)] then find A^(3)-3A^(2)-A-3I where I is unit matrix of order 3.

" If A=[[1,-2,2],[2,0,-1],[-3,1,1]] and "B" is the adjoint of A then value of |AB-3I| where I is the identity matrix of order 3, is

If A = {:((1,-1,2),(3,0,-2),(1,0,3)):} , verify that A (adj A) = |A|* I .

If A =[{:(3,-3,4),(2,-3,4),(0,-1,1):}] and B is the adjoint of A, find the value of |AB+2I| ,where l is the identity matrix of order 3.

If P=[{:(1,2,-2),(-1,3,0),(0,-2,1):}] , find P^(-1) . Verify that "PP"^(-1)=I

If A=[[1,-3,22,0,-11,2,3]], then show that AA^(3)-4A^(2)-3A+11I=0 where O and I are null and identity matrix of order 3 respectively.

If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

RD SHARMA-ALGEBRA OF MATRICES-Solved Examples And Exercises
  1. If A=[(0, 0), (4, 0)] , find A^(16) .

    Text Solution

    |

  2. If A=[(0,-x),(x,0)] , B=[(0 ,1 ),(1 ,0)] and x^2=-1 , then show tha...

    Text Solution

    |

  3. If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I...

    Text Solution

    |

  4. If A=[(3,-5),(-4, 2)] , then find A^2-5A-14 I .

    Text Solution

    |

  5. If P(x)=[cosxsinx-sinxcosx] , then show that P(x)\ P(y)=P(x+y)=P(y)\ P...

    Text Solution

    |

  6. If P=[(x,0, 0),( 0,y,0 ),(0, 0,z)] and Q=[(a,0 ,0 ),(0,b,0 ),(0, 0,c)...

    Text Solution

    |

  7. If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence fi...

    Text Solution

    |

  8. If A=[(1 ,1),( 0, 1)] , prove that A^n=[(1,n),(0, 1)] for all positive...

    Text Solution

    |

  9. If A=[(a, b),(0, 1)] , prove that A^n=[(a^n ,b((a^n-1)/(a-1))),(0, 1)]...

    Text Solution

    |

  10. If A=[(costheta,isintheta),(isintheta,costheta)] , then prove by pri...

    Text Solution

    |

  11. If A=[(cosalpha+sinalpha,sqrt(2)sinalpha),(-sqrt(2)sinalpha,cosalpha-s...

    Text Solution

    |

  12. If A=[(1, 1, 1),( 0, 1, 1), (0, 0, 1)] , then use the principle of m...

    Text Solution

    |

  13. If B ,\ C are n rowed square matrices and if A=B+C , B C=C B , C^2=...

    Text Solution

    |

  14. If A=d i ag\ (a\ \ b\ \ c) , show that A^n=d i ag\ (a^n\ \ b^n\ \ c^n)...

    Text Solution

    |

  15. If A is a square matrix, using mathematical induction prove that (A...

    Text Solution

    |

  16. A matrix X has a+b rows and a+2 columns while the matrix Y has b+1 ...

    Text Solution

    |

  17. Give examples of matrices A and B such that A B!=B A . (ii) A and B...

    Text Solution

    |

  18. Give examples of matrices A and B such that A B=O but B A!=O . (ii)...

    Text Solution

    |

  19. Let A and B be square matrices of the same order. Does (A+B)^2=A^2+...

    Text Solution

    |

  20. If A and B are square matrices of the same order, explain, why in g...

    Text Solution

    |