Home
Class 12
MATHS
If A=[-2 4 5] , B=[1\ \ 3\ \ -6] , verif...

If `A=[-2 4 5]` , `B=[1\ \ 3\ \ -6]` , verify that `(A B)^T=B^T\ A^T`

Text Solution

Verified by Experts

`A=[[-2], [4], [5]]`
`B=[[1, 3, -6]]`
`(AB)^T=[[-2, -6, -12], [4, 12, -24], [5, 15, -30]]^T`
`=[[-2, 4, 5], [-6, 12, 15], [-12, -24, -30]]`

`B^TA^T=[[1], [3], [-6]][[-2, 4, 5]]`
`=[[-2, 4, 5], [-6, 12, 15], [-12, -24, -30]]`
`(AB)^T=B^TA^T`
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

If A=[[3] , [ 5] , [2] ] and B=[1\ \ 0\ \ 4] , verify that (A B)^T=B^T\ A^Tdot

If A=[-1 2 3] and B=[-2 -1 -4] , verify that (A B)^T=B^T A^T

If A=[[-2],[4],[5]],B=[1,3-6] then verify that (AB)'=B'A'

If A=[352] and B=[104], verify that (AB)^(T)=B^(T)A^(T)

If A=[[-2],[4],[5]] and B=[[1,3,-6]] ,verify that (AB)'=B'A' .

If A=[(2),(-4),(1)],B=["6 3 -1"] , verify that (AB)'=B'A'

If A=[(3),(-4),(5)],B=["6 1 -1"] , verify that : (AB)'=B'A' .

If A=[[1,3],[2,4]] and B=[[2,-1],[3,2]], verify that (AB)^(T)=B^(T)A^(T)

If A= [{:(,-2),(,4),(,5):}] , B=(1,3-6) verify that (AB)'=B'A'

Let A=[2-3-75] and B=[102-4] verify that (2A)^(T)=2A^(T)( ii) (A+B)^(T)=A^(T)+B^(T)( iii) (A-B)^(T)=A^(T)-B^(T)( iv )(AB)^(T)=B^(T)A^(T)

RD SHARMA-ALGEBRA OF MATRICES-Solved Examples And Exercises
  1. If A=[3 5 2] and B=[1\ \ 0\ \ 4] , verify that (A B)^T=B^T\ A^Tdot

    Text Solution

    |

  2. Let A=[1-1 0 2 1 3 1 2 1] and B=[1 2 3 2 1 3 0 1 1] . Find A^T ,\ B^T ...

    Text Solution

    |

  3. If A=[-2 4 5] , B=[1\ \ 3\ \ -6] , verify that (A B)^T=B^T\ A^T

    Text Solution

    |

  4. If A=[(2, 4,-1),(-1, 0, 2)] , B=[(3, 4),(-1, 2),( 2, 1)] , find (A B)^...

    Text Solution

    |

  5. For the matrices A and B , A=[2 1 3 4 1 0] , B=[1-1 0 2 5 0] verify th...

    Text Solution

    |

  6. For two matrices A and B , verify that (A B)^T=B^T\ A^T , where A=[1 3...

    Text Solution

    |

  7. If A^T=[[3,4],[-1,2],[0,1]] and B=[[-1,2,1],[1,2,3]] , find A^T-B^T .

    Text Solution

    |

  8. If A=[cosalphasinalpha-sinalphacosalpha] , then verify that A^T\ A=I2 ...

    Text Solution

    |

  9. If A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]], verify that A^T A=I2

    Text Solution

    |

  10. Let li,mi,ni; i=1,2,3 be the direction cosines of three mutually perpe...

    Text Solution

    |

  11. Show that the elements on the main diagonal of a skew-symmetric mat...

    Text Solution

    |

  12. If the matrix A=[0a3 2b-1c1 0] is skew-symmetric, find the values o...

    Text Solution

    |

  13. Let A be a square matrix. Then prove that (i) A + A^T is a symmetric m...

    Text Solution

    |

  14. Prove that every square matrix can be uniquely expressed as the sum of...

    Text Solution

    |

  15. If A and B are symmetric matrices, then show that A B is symmetric ...

    Text Solution

    |

  16. Show that the matrix B^T\ A B is symmetric or skew-symmetric accord...

    Text Solution

    |

  17. Let A and B be symmetric matrices of same order. Then A+B is a symmetr...

    Text Solution

    |

  18. Express the matrix A=[[3,2, 3],[ 4, 5, 3],[ 2, 4, 5]] as the sum of a ...

    Text Solution

    |

  19. Show that all positive integral powers of a symmetric matrix are sy...

    Text Solution

    |

  20. Show that positive odd integral powers of a skew-symmetric matrix are ...

    Text Solution

    |