Home
Class 12
MATHS
For two matrices A and B , verify that (...

For two matrices `A` and `B` , verify that `(A B)^T=B^T\ A^T` , where `A=[1 3 2 4]` , `B=[1 4 2 5]`

Text Solution

Verified by Experts

Given:`A=[(1, 3),( 2, 4)]`, `B=[(1, 4),( 2, 5)]`
`AB^T=([(1, 3),( 2, 4)][(1, 4),( 2, 5)])^T`
`AB^T=[(1+6,4+15),(2+8,8+20)]^T`
`AB^T=[(7,19),(10,28)]^T`
`AB^T=[(7,10),(19,28)]`
`B^TA^T=[(1,2),(4,5)][(1,2),(3,4)]`
`B^TA^T=[(1+6,2+8),(4+15,8+20)]`
`B^TA^T=[(7,10),(19,28)]`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA|Exercise Solved Examples And Exercises|331 Videos

Similar Questions

Explore conceptually related problems

For the matrices A and B, verify that (AB)'=B'A', where (i) A=[[1],[-4],[3]], B=[[-1,2,1]]

For the matrices A and B, verify that (A B)^(prime)=B^(prime)A^(prime) , where(i) A=[[1],[-4],[ 3]] , B=[[-1 ,2, 1]] (iii) A=[[0],[ 1],[ 2]] , B=[[1, 5, 7]]

If A=[-1 2 3] and B=[-2 -1 -4] , verify that (A B)^T=B^T A^T

For the matrices A and B,A=[213410]B=[1-10250] verify that (AB)^(T)=B^(T)A^(T)

If A=[352] and B=[104], verify that (AB)^(T)=B^(T)A^(T)

For any two matrices A and B of the same order; (A+B)^(T)=A^(T)+B^(T)

If A=[-245],B=[[1,3-6]], verify that (AB)^(T)=B^(T)A^(T)

If A=[[3] , [ 5] , [2] ] and B=[1\ \ 0\ \ 4] , verify that (A B)^T=B^T\ A^Tdot

If A and B are two matrices such that AB is defined; then (AB)^(T)=B^(T).A^(T)

For the following matrices,(A+B)^(T)=B^(T)+A^(T)=A^(T)+B^(T)

RD SHARMA-ALGEBRA OF MATRICES-Solved Examples And Exercises
  1. If A=[(2, 4,-1),(-1, 0, 2)] , B=[(3, 4),(-1, 2),( 2, 1)] , find (A B)^...

    Text Solution

    |

  2. For the matrices A and B , A=[2 1 3 4 1 0] , B=[1-1 0 2 5 0] verify th...

    Text Solution

    |

  3. For two matrices A and B , verify that (A B)^T=B^T\ A^T , where A=[1 3...

    Text Solution

    |

  4. If A^T=[[3,4],[-1,2],[0,1]] and B=[[-1,2,1],[1,2,3]] , find A^T-B^T .

    Text Solution

    |

  5. If A=[cosalphasinalpha-sinalphacosalpha] , then verify that A^T\ A=I2 ...

    Text Solution

    |

  6. If A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]], verify that A^T A=I2

    Text Solution

    |

  7. Let li,mi,ni; i=1,2,3 be the direction cosines of three mutually perpe...

    Text Solution

    |

  8. Show that the elements on the main diagonal of a skew-symmetric mat...

    Text Solution

    |

  9. If the matrix A=[0a3 2b-1c1 0] is skew-symmetric, find the values o...

    Text Solution

    |

  10. Let A be a square matrix. Then prove that (i) A + A^T is a symmetric m...

    Text Solution

    |

  11. Prove that every square matrix can be uniquely expressed as the sum of...

    Text Solution

    |

  12. If A and B are symmetric matrices, then show that A B is symmetric ...

    Text Solution

    |

  13. Show that the matrix B^T\ A B is symmetric or skew-symmetric accord...

    Text Solution

    |

  14. Let A and B be symmetric matrices of same order. Then A+B is a symmetr...

    Text Solution

    |

  15. Express the matrix A=[[3,2, 3],[ 4, 5, 3],[ 2, 4, 5]] as the sum of a ...

    Text Solution

    |

  16. Show that all positive integral powers of a symmetric matrix are sy...

    Text Solution

    |

  17. Show that positive odd integral powers of a skew-symmetric matrix are ...

    Text Solution

    |

  18. A matrix which is both symmetric as well as skew-symmetric is a nul...

    Text Solution

    |

  19. If A=[2 3 4 5] , prove that A-A^T is a skew-symmetric matrix.

    Text Solution

    |

  20. If A=[3-4 1-1] , show that A-A^T is a skew symmetric matrix.

    Text Solution

    |