Home
Class 12
MATHS
If y=tan^(-1){(loge(e/x^2))/(loge(ex^2))...

If `y=tan^(-1){(log_e(e/x^2))/(log_e(ex^2))}+tan^(-1)((3+2log_ex)/(1-6log_ex))`, then `(d^2y)/(dx^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((log((e)/(x^(2))))/(log(ex^(2))))+tan^(-1)((3+2log x)/(1-6log x)) then (d^(2)y)/(dx^(2)) is (a) 2(b)1(c)0(d)-1

If y=tan^(-1){((log)_e(e//x^2))/((log)_e(e x^2))}+tan^(-1)((3+2\ (log)_e x)/(1-6\ (log)_e x)) , then (d^2y)/(dx^2)= (a) 2 (b) 1 (c) 0 (d) -1

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(--1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(-1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(-1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

If y=tan^(-1){((log)_(e)(e/x^(2)))/((log_(e)(ex^(2)))}+tan^(-1)((3+2(log)_(e)x)/(1-6(log)_(e)x)), then (d^(2)y)/(dx^(2))=(a)2(b)1(c)0(d)-1

If y=tan^-1((log(e/x^2))/(log(ex^2)))+tan^-1((3+2logx)/(1-6logx)), then (d^2y)/(dx^2) is (a) 2 (b) 1 (c) 0 (d) -1