Home
Class 12
MATHS
Evaluate: =|cosalphacosbetacosalphasinbe...

Evaluate: `=|cosalphacosbetacosalphasinbeta-sinalpha-sinbetacosbeta0sinalphacosbetasinalphasinbetacosalpha|`

Text Solution

AI Generated Solution

To evaluate the determinant \[ D = \begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta \cos \beta & 0 & \sin \beta \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}]

Prove that |[cos alpha cos beta, cos alpha sin beta , sin alpha],[-sinbeta,cosbeta,0],[sinalpha cosbeta, sinalpha sinbeta, cos alpha]|=cos2alpha

costheta-sintheta=cosalpha-sinalpha

If cosalpha+cosbeta=0=sinalpha+sinbeta , then cos2alpha+cos2beta=?

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

Evaluate : Delta=|{:(0,sinalpha,-cosalpha),(-sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}| .

A square of side ' a ' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha (0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is: a. y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=a b. y(cosalpha+sinalpha)+x(sinalpha-cosalpha)=a c. y(cosalpha-sinalpha)+x(sinalpha+cosalpha)=a d. y(cosalpha+sinalpha)-x(cosalpha+sinalpha)=a

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Evaluate |2 3-5 7 1-2-3 4 1| by two methods.

    Text Solution

    |

  2. Evaluate: =|0sinalpha-cosalpha-sinalpha0sinbetacosalpha-sinbeta0|

    Text Solution

    |

  3. Evaluate: =|cosalphacosbetacosalphasinbeta-sinalpha-sinbetacosbeta0sin...

    Text Solution

    |

  4. If A=[2 5 2 1] and B=[4-3 2 5] , verify that |A B|=|A||B| .

    Text Solution

    |

  5. If A=[[1 ,0 ,1],[0 ,1, 2],[ 0, 0, 4]] , then show that |3A|" "=" "27|...

    Text Solution

    |

  6. Find the values of x , if |2 4 5 1|=|2x4 6x| (ii)|2 3 4 5|=|x3 2x5| (...

    Text Solution

    |

  7. Find the values of x , if |3x7 2 4|=10 (ii) |x+1x-1x-3x+2|=|4-1 1 3| ...

    Text Solution

    |

  8. Find the integral value of x , if |[x^2,x,1],[ 0, 2, 1],[ 3, 1, 4]...

    Text Solution

    |

  9. For what value of x the matrix A is singular? A=[1+x7 3-x8] (ii) A=[x-...

    Text Solution

    |

  10. Without expanding evaluate the determinant |41 1 5 79 7 9 29 5 3| .

    Text Solution

    |

  11. If w is a complex cube root of unity. Show that |1w w^2w w^2 1w^2 1...

    Text Solution

    |

  12. Show that |1a b+c1b c+a1c a+b|=0 .

    Text Solution

    |

  13. Show that |[b-c,c-a, a-b],[ c-a, a-b,b-c],[ a-b,b-c,c-a]| = 0 .

    Text Solution

    |

  14. Show that |1b c a(b+c)1c a b(c+a)1a b c(a+b)|=0 .

    Text Solution

    |

  15. Without expanding prove that: |x+y y+z z+x z x y1 1 1|=0 .

    Text Solution

    |

  16. Without expanding show that: =|cos e c^2thetacot^2theta1cot^2thetac...

    Text Solution

    |

  17. Find the value of the determinant =|2 3 4 5 6 8 6x9x 12 x| .

    Text Solution

    |

  18. Without expanding show that |b^2c^2b c b+cc^2a^2c a c+a a^2b^2a b a...

    Text Solution

    |

  19. Without expanding evaluate the determinant |sinalphacosalphasin(alp...

    Text Solution

    |

  20. Without expanding evaluate the determinant |(x^2+x^(-1))^2(a^2-a^(-1))...

    Text Solution

    |