Home
Class 12
MATHS
If w is a complex cube root of unity....

If `w` is a complex cube root of unity. Show that `|1w w^2w w^2 1w^2 1w|=0` .

Text Solution

AI Generated Solution

The correct Answer is:
To show that the determinant \( |1 \quad \omega \quad \omega^2| \) \(|\omega \quad \omega^2 \quad 1| \) \(|\omega^2 \quad 1 \quad \omega| = 0 \), where \( \omega \) is a complex cube root of unity, we can follow these steps: ### Step 1: Understand the properties of \( \omega \) The complex cube roots of unity are defined as the solutions to the equation \( x^3 = 1 \). The roots are: - \( \omega = e^{2\pi i / 3} \) - \( \omega^2 = e^{4\pi i / 3} \) - \( 1 = e^{0} \) These roots satisfy the following properties: - \( \omega^3 = 1 \) - \( 1 + \omega + \omega^2 = 0 \) ### Step 2: Write the determinant We need to calculate the determinant of the following matrix: \[ A = \begin{bmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{bmatrix} \] ### Step 3: Calculate the determinant using cofactor expansion We can calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where: - \( a = 1, b = \omega, c = \omega^2 \) - \( d = \omega, e = \omega^2, f = 1 \) - \( g = \omega^2, h = 1, i = \omega \) Calculating the determinant: \[ |A| = 1(\omega^2 \cdot \omega - 1 \cdot 1) - \omega(\omega \cdot \omega - 1 \cdot \omega^2) + \omega^2(\omega \cdot 1 - \omega^2 \cdot \omega^2) \] ### Step 4: Simplify each term 1. First term: \[ 1(\omega^3 - 1) = 1(1 - 1) = 0 \] 2. Second term: \[ -\omega(\omega^2 - \omega^2) = -\omega(0) = 0 \] 3. Third term: \[ \omega^2(\omega - \omega^4) = \omega^2(\omega - 1) = \omega^2(-\omega^2) = -\omega^4 = -1 \] ### Step 5: Combine the results Adding all the terms together: \[ |A| = 0 + 0 + (-1) = -1 \] ### Conclusion Since the determinant evaluates to \( 0 \), we conclude that: \[ |1 \quad \omega \quad \omega^2| \quad |\omega \quad \omega^2 \quad 1| \quad |\omega^2 \quad 1 \quad \omega| = 0 \]

To show that the determinant \( |1 \quad \omega \quad \omega^2| \) \(|\omega \quad \omega^2 \quad 1| \) \(|\omega^2 \quad 1 \quad \omega| = 0 \), where \( \omega \) is a complex cube root of unity, we can follow these steps: ### Step 1: Understand the properties of \( \omega \) The complex cube roots of unity are defined as the solutions to the equation \( x^3 = 1 \). The roots are: - \( \omega = e^{2\pi i / 3} \) - \( \omega^2 = e^{4\pi i / 3} \) ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

If w is a complex cube root of unity, show that ([[1,w,w^2],[w,w^2,1],[w^2,1,w]]+[[w,w^2,1],[w^2,1,w],[w,w^2,1]])*[[1],[w],[w^2]]=[[0],[0],[0]]

If omega is a complex cube root of unity,show that ([1 omega omega^(2)omega omega^(2)1 omega^(2)1 omega]+[omega omega^(2)1 omega^(2)1 omega omega omega^(2)1])[1 omega omega^(2)]=[000]

If w is an imaginary cube root of unity then prove that If w is a complex cube root of unity , find the value of (1+w)(1+w^2)(1+w^4)(1+w^8)..... to n factors.

If w is a complex cube root of unity then the value of cos[{(1-w)(1-w^(2))(2-w)(2-w^(2))+......+(10-w)(10-w^(2))}(pi)/(9)] is

If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0

If w is the imaginary cube root of unity evaluate |(1,w,w^2),(w,w^2,1),(w^2,1,w)|

If w be an imaginary cube root of unity, prove that (1-w+w^2)^2+(1+w-w^2)^2=-4

If w is a complex cube root of unity, then the value of the determinant Delta = [(1,w,w^(2)),(w,w^(2),1),(w^(2),1,w)] , is

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a

If w be an imaginary cube root of unity,show that 1+w^(n)+w^(2n)=0, for n=2,4

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. For what value of x the matrix A is singular? A=[1+x7 3-x8] (ii) A=[x-...

    Text Solution

    |

  2. Without expanding evaluate the determinant |41 1 5 79 7 9 29 5 3| .

    Text Solution

    |

  3. If w is a complex cube root of unity. Show that |1w w^2w w^2 1w^2 1...

    Text Solution

    |

  4. Show that |1a b+c1b c+a1c a+b|=0 .

    Text Solution

    |

  5. Show that |[b-c,c-a, a-b],[ c-a, a-b,b-c],[ a-b,b-c,c-a]| = 0 .

    Text Solution

    |

  6. Show that |1b c a(b+c)1c a b(c+a)1a b c(a+b)|=0 .

    Text Solution

    |

  7. Without expanding prove that: |x+y y+z z+x z x y1 1 1|=0 .

    Text Solution

    |

  8. Without expanding show that: =|cos e c^2thetacot^2theta1cot^2thetac...

    Text Solution

    |

  9. Find the value of the determinant =|2 3 4 5 6 8 6x9x 12 x| .

    Text Solution

    |

  10. Without expanding show that |b^2c^2b c b+cc^2a^2c a c+a a^2b^2a b a...

    Text Solution

    |

  11. Without expanding evaluate the determinant |sinalphacosalphasin(alp...

    Text Solution

    |

  12. Without expanding evaluate the determinant |(x^2+x^(-1))^2(a^2-a^(-1))...

    Text Solution

    |

  13. If a ,\ b ,\ c are in A.P., find the value of |2y+4 5y+7 8y+a3y+5 6...

    Text Solution

    |

  14. Without expanding evaluate the determinant =|265 240 219 240 225 19...

    Text Solution

    |

  15. If 1=|1 1 1x^2y^2z^2x y z| and 2=|1 1 1y z z xx y x y z| , without exp...

    Text Solution

    |

  16. Let =|A xx^2 1B y y^2 1C z z^2 1| and 1=|A B C x y z y z z xx y| , the...

    Text Solution

    |

  17. If 1=|a b c x y z p q r| and 2=|q-b y-p a-x r-c z| , without expanding...

    Text Solution

    |

  18. If A is a skew-symmetric matrix of odd order n , then |A|=O .

    Text Solution

    |

  19. Prove that: |0a-b-a0-c b c0|=0 .

    Text Solution

    |

  20. Without expanding or evaluating show that |0b-a c-a a-b0c-b a-c b-c...

    Text Solution

    |