Home
Class 12
MATHS
Without expanding evaluate the determ...

Without expanding evaluate the determinant `|sinalphacosalphasin(alpha+delta)sinbetacosbetasin(beta+delta)singammacosgammasin(gamma+delta)|` .

Text Solution

Verified by Experts

The correct Answer is:
`D=0`

Let the given determinant be `\Delta`.
Then, applying `C_{3} \rightarrow C_{3}+(\sin \delta) C_{1}-(\cos \delta) C_{2}` $$\Delta=\left|\begin{array}{ccc}\sin \alpha & \cos \alpha & 0 \\ \sin \beta & \cos \beta & 0 \\ \sin g \gamma & \cos \gamma & 0\end{array}\right|=0\left[\because\right. \text{ each element in}\left.C_{3} \text{ is } 0 \right]$$
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Without expanding evaluate the determinant det[[sin alpha,cos alpha sin(alpha+delta)sin beta,cos beta,sin(beta+delta)sin gamma,cos gamma,sin(gamma+delta)]]

|(sin alpha, cosalpha,sin(alpha+delta)),(sinbeta, cos beta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|=

sin alpha, cos alpha, cos (alpha + delta) sin beta, cos beta, cos (beta + delta) sin gamma, cos gamma, cos (gamma + delta)] | = 0

Using properties of determinants. Prove that |sinalphacosalphacos(alpha+delta)sinbetacosbetacos(beta+delta)singammacosgammacos(gamma+delta)|=0

Without expanding,show that the value of each of the determinants is zero: det[[sin alpha,cos alpha,cos(alpha+delta)sin beta,cos beta,cos(beta+delta)sin gamma,cos gamma,cos(gamma+delta)]]

Prove that det [[sin alpha, cos alpha, sin (alpha + delta) sin beta, cos beta, sin (beta + delta) sin gamma, cos gamma, sin (gamma + delta)]] = 0

If /_\ = |[sinalpha, cosalpha, sin(alpha+delta)],[sinbeta, cosbeta, sin(beta+delta)],[singamma, cosgamma, sin(gamma+delta)]| then prove that /_\ is independent of alpha, beta, gamma and delta.

If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos alpha, sin beta+cos beta),(sin gamma, cos alpha, sin gamma+cos beta)| then Delta equals

Let alpha,beta and gamma are the angles of a right angle triangle,then the value of sin alpha*sin beta*sin(alpha-beta)+sin beta*sin gamma*sin(beta-gamma)+sin gamma*sin alpha*sin(gamma-beta)+sin(beta-gamma)*sin(gamma-gamma)*sin(gamma-

If Delta = det [[sin alpha, cos alpha, sin alpha + cos alphasin beta, cos alpha, sin beta + cos betasin gamma, cos alpha, sin gamma + cos beta]] then Delta

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Find the value of the determinant =|2 3 4 5 6 8 6x9x 12 x| .

    Text Solution

    |

  2. Without expanding show that |b^2c^2b c b+cc^2a^2c a c+a a^2b^2a b a...

    Text Solution

    |

  3. Without expanding evaluate the determinant |sinalphacosalphasin(alp...

    Text Solution

    |

  4. Without expanding evaluate the determinant |(x^2+x^(-1))^2(a^2-a^(-1))...

    Text Solution

    |

  5. If a ,\ b ,\ c are in A.P., find the value of |2y+4 5y+7 8y+a3y+5 6...

    Text Solution

    |

  6. Without expanding evaluate the determinant =|265 240 219 240 225 19...

    Text Solution

    |

  7. If 1=|1 1 1x^2y^2z^2x y z| and 2=|1 1 1y z z xx y x y z| , without exp...

    Text Solution

    |

  8. Let =|A xx^2 1B y y^2 1C z z^2 1| and 1=|A B C x y z y z z xx y| , the...

    Text Solution

    |

  9. If 1=|a b c x y z p q r| and 2=|q-b y-p a-x r-c z| , without expanding...

    Text Solution

    |

  10. If A is a skew-symmetric matrix of odd order n , then |A|=O .

    Text Solution

    |

  11. Prove that: |0a-b-a0-c b c0|=0 .

    Text Solution

    |

  12. Without expanding or evaluating show that |0b-a c-a a-b0c-b a-c b-c...

    Text Solution

    |

  13. Without expanding, prove that |a+b x c+dx p+q x a x+b c x+d p x+q u...

    Text Solution

    |

  14. Prove that: |-a^2a b a c b a-b^2b c a c b c-c^2|=4a^2b^2c^2 .

    Text Solution

    |

  15. Prove that: |1 1 1 1 1+x1 1 1 1+y|=x y .

    Text Solution

    |

  16. Evaluate: |1a a^2 1bb^2 1cc^2| .

    Text Solution

    |

  17. Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

    Text Solution

    |

  18. Prove that: |alphabetagammaalpha^2beta^2gamma^2beta+gammagamma+alphaal...

    Text Solution

    |

  19. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A,sinB+...

    Text Solution

    |

  20. In a A B C ,if|1 1 1 1+cosA1+cosB1+cosCcos^2A+cosBcos^2A+cosBcos^2+co...

    Text Solution

    |