Home
Class 12
MATHS
Without expanding evaluate the determ...

Without expanding evaluate the determinant `=|265 240 219 240 225 198 219 198 181|` .

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ D = \begin{vmatrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{vmatrix} \] without expanding, we will perform a series of transformations on the columns and rows. ### Step 1: Transform the columns We will first perform the following transformations: - \( C_1 \leftarrow C_1 - C_3 \) - \( C_2 \leftarrow C_2 - C_3 \) This does not change the value of the determinant. Calculating the new columns: - For \( C_1 \): \[ 265 - 219 = 46, \quad 240 - 198 = 42, \quad 219 - 181 = 38 \] - For \( C_2 \): \[ 240 - 219 = 21, \quad 225 - 198 = 27, \quad 198 - 181 = 17 \] So, the determinant now looks like: \[ D = \begin{vmatrix} 46 & 21 & 219 \\ 42 & 27 & 198 \\ 38 & 17 & 181 \end{vmatrix} \] ### Step 2: Further transformations Next, we will perform the following transformations: - \( C_1 \leftarrow C_1 - 2C_2 \) - \( C_3 \leftarrow C_3 - 10C_2 \) Calculating the new columns: - For \( C_1 \): \[ 46 - 2 \cdot 21 = 46 - 42 = 4, \quad 42 - 2 \cdot 27 = 42 - 54 = -12, \quad 38 - 2 \cdot 17 = 38 - 34 = 4 \] - For \( C_3 \): \[ 219 - 10 \cdot 21 = 219 - 210 = 9, \quad 198 - 10 \cdot 27 = 198 - 270 = -72, \quad 181 - 10 \cdot 17 = 181 - 170 = 11 \] So, the determinant now looks like: \[ D = \begin{vmatrix} 4 & 21 & 9 \\ -12 & 27 & -72 \\ 4 & 17 & 11 \end{vmatrix} \] ### Step 3: Row transformations Now, we will perform the following row transformations: - \( R_1 \leftarrow R_1 - R_2 \) - \( R_3 \leftarrow R_3 - R_2 \) Calculating the new rows: - For \( R_1 \): \[ 4 - (-12) = 16, \quad 21 - 27 = -6, \quad 9 - (-72) = 81 \] - For \( R_3 \): \[ 4 - (-12) = 16, \quad 17 - 27 = -10, \quad 11 - (-72) = 83 \] So, the determinant now looks like: \[ D = \begin{vmatrix} 16 & -6 & 81 \\ -12 & 27 & -72 \\ 16 & -10 & 83 \end{vmatrix} \] ### Step 4: Factor out common elements From the first row, we can factor out 2: \[ D = 2 \cdot \begin{vmatrix} 8 & -3 & 40.5 \\ -12 & 27 & -72 \\ 16 & -10 & 83 \end{vmatrix} \] From the second row, we can factor out 3: \[ D = 2 \cdot 3 \cdot \begin{vmatrix} 8 & -3 & 40.5 \\ -4 & 9 & -24 \\ 16 & -10 & 83 \end{vmatrix} \] ### Step 5: Identify equal rows Notice that after the transformations, rows \( R_1 \) and \( R_3 \) have become equal. Thus, the determinant evaluates to 0. ### Final Result Therefore, the value of the determinant \( D \) is: \[ D = 0 \]

To evaluate the determinant \[ D = \begin{vmatrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Without expanding evaluate the determinant |411579792953|.

Without expanding evaluate the determinant det[[79,7,929,5,3]]

Evaluate |{:(265, 240, 219),(240, 225, 198), (219, 198, 181):}|

|[265,240,219],[240,225,198],[219,198,181]|=0

Prove that |[265,240,219] , [240,225,198] , [219,198,181]|=0

Prove that |[265,240,219],[240,225,198],[219,198,181]|=0

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

The value of Delta by using the properties of determinant where Delta = |{:(265,240,219),(240,225,198),(219,198,181):}| is

without expanding evaluate the determinant Delta=det[[1,1,1a,b,ca^(2),b^(2),c^(2)]]

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Without expanding evaluate the determinant |(x^2+x^(-1))^2(a^2-a^(-1))...

    Text Solution

    |

  2. If a ,\ b ,\ c are in A.P., find the value of |2y+4 5y+7 8y+a3y+5 6...

    Text Solution

    |

  3. Without expanding evaluate the determinant =|265 240 219 240 225 19...

    Text Solution

    |

  4. If 1=|1 1 1x^2y^2z^2x y z| and 2=|1 1 1y z z xx y x y z| , without exp...

    Text Solution

    |

  5. Let =|A xx^2 1B y y^2 1C z z^2 1| and 1=|A B C x y z y z z xx y| , the...

    Text Solution

    |

  6. If 1=|a b c x y z p q r| and 2=|q-b y-p a-x r-c z| , without expanding...

    Text Solution

    |

  7. If A is a skew-symmetric matrix of odd order n , then |A|=O .

    Text Solution

    |

  8. Prove that: |0a-b-a0-c b c0|=0 .

    Text Solution

    |

  9. Without expanding or evaluating show that |0b-a c-a a-b0c-b a-c b-c...

    Text Solution

    |

  10. Without expanding, prove that |a+b x c+dx p+q x a x+b c x+d p x+q u...

    Text Solution

    |

  11. Prove that: |-a^2a b a c b a-b^2b c a c b c-c^2|=4a^2b^2c^2 .

    Text Solution

    |

  12. Prove that: |1 1 1 1 1+x1 1 1 1+y|=x y .

    Text Solution

    |

  13. Evaluate: |1a a^2 1bb^2 1cc^2| .

    Text Solution

    |

  14. Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

    Text Solution

    |

  15. Prove that: |alphabetagammaalpha^2beta^2gamma^2beta+gammagamma+alphaal...

    Text Solution

    |

  16. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A,sinB+...

    Text Solution

    |

  17. In a A B C ,if|1 1 1 1+cosA1+cosB1+cosCcos^2A+cosBcos^2A+cosBcos^2+co...

    Text Solution

    |

  18. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  19. If x!=y!=z and |xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then prove that ...

    Text Solution

    |

  20. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |