Home
Class 12
MATHS
Let =|A xx^2 1B y y^2 1C z z^2 1| and 1=...

Let `=|A xx^2 1B y y^2 1C z z^2 1|` and `_1=|A B C x y z y z z xx y|` , then show that `_1=` .

Text Solution

Verified by Experts

The correct Answer is:
Proved

\begin{aligned} &\Delta=\left|\begin{array}{lll} \mathrm{Ax} & \mathrm{x}^{2} & 1 \\ \mathrm{By} & \mathrm{y}^{2} & 1 \\ \mathrm{Cz} & \mathrm{z}^{2} & 1 \end{array}\right|\\ &\Delta_{1}=\left|\begin{array}{ccc} \mathrm{A} & \mathrm{B} & \mathrm{C} \\ ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Let =|A xx^2 1B y y^2 1C z z^2 1|a n d_1=|A B C x y z y z z xx y|, then show that _1=

If _1=|1 1 1x^2y^2z^2x y z|a n d_2=|1 1 1y z z xx y x y z|, without expanding prove that _1=_2

Let x_(1) and y_(1) be real number. If z_(1) and z_(2) are complex numbers such that |z_(1)|=|z_(2)|=4 , then |x_(1)z_(1)-y_(1)z_(2)|^(2)+|y_(1)z_(1)+x_(1)z_(2)|^(2)=

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2

If a = 2 , x = 1, y = 1 , z = 1 then find the value of a^x times a^y times a^z

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Without expanding evaluate the determinant =|265 240 219 240 225 19...

    Text Solution

    |

  2. If 1=|1 1 1x^2y^2z^2x y z| and 2=|1 1 1y z z xx y x y z| , without exp...

    Text Solution

    |

  3. Let =|A xx^2 1B y y^2 1C z z^2 1| and 1=|A B C x y z y z z xx y| , the...

    Text Solution

    |

  4. If 1=|a b c x y z p q r| and 2=|q-b y-p a-x r-c z| , without expanding...

    Text Solution

    |

  5. If A is a skew-symmetric matrix of odd order n , then |A|=O .

    Text Solution

    |

  6. Prove that: |0a-b-a0-c b c0|=0 .

    Text Solution

    |

  7. Without expanding or evaluating show that |0b-a c-a a-b0c-b a-c b-c...

    Text Solution

    |

  8. Without expanding, prove that |a+b x c+dx p+q x a x+b c x+d p x+q u...

    Text Solution

    |

  9. Prove that: |-a^2a b a c b a-b^2b c a c b c-c^2|=4a^2b^2c^2 .

    Text Solution

    |

  10. Prove that: |1 1 1 1 1+x1 1 1 1+y|=x y .

    Text Solution

    |

  11. Evaluate: |1a a^2 1bb^2 1cc^2| .

    Text Solution

    |

  12. Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

    Text Solution

    |

  13. Prove that: |alphabetagammaalpha^2beta^2gamma^2beta+gammagamma+alphaal...

    Text Solution

    |

  14. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A,sinB+...

    Text Solution

    |

  15. In a A B C ,if|1 1 1 1+cosA1+cosB1+cosCcos^2A+cosBcos^2A+cosBcos^2+co...

    Text Solution

    |

  16. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  17. If x!=y!=z and |xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then prove that ...

    Text Solution

    |

  18. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |

  19. Using properties of determinants, show that |1a a^2-b c1bb^2-c a1cc...

    Text Solution

    |

  20. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |