Home
Class 12
MATHS
Evaluate: |1a a^2 1bb^2 1cc^2| ....

Evaluate: `|1a a^2 1bb^2 1cc^2|` .

Text Solution

Verified by Experts

The correct Answer is:
`=(a-b)(b-c)(c-a)`

ATQ, it is given: $$ \begin{aligned} &\left|\begin{array}{ccc} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{array}\right| \\ \\ ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

By using properties of determinants. Show that: (i) |1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a) (ii) |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)

If f(x) is a polynomial of degree <3, prove that |1af(a)//(x-a)1bf(b)//(x-b)1cf(c)//(x-c)|-:|1a a^2 1bb^2 1cc^2|=(f(x))/((x-a)(x-b)(x-c))

Without expanding, show that the value of each of the determinants is zero: |1/a a^2b c a/bb^2a c a/cc^2a b|

If |a a^2 1+ahat3bb^2 1+b^3cc^2 1+c^3|=0 and the vectors vec A= hat i+a hat j+a^2 hat k , vec B= hat i+b hat j+b^2 hat k , vec C= hat i+c hat j+c^2 hat k are non-coplanar, then prove that a b c=-1 .

Solve the following: |1xx^2 1a b^2 1b c^2|=0 , a!=b (ii) |x+1 3 5 2x+2 5 2 3x+4|=0 (iii) |1xx^3 1bb^3 1cc^3|=0 , b!=c

Evaluate : ( 1/2 ÷ 1/2 times 1/2 ) / ( 1/2 + 1/2 times 1/2 )

Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Prove that: |-a^2a b a c b a-b^2b c a c b c-c^2|=4a^2b^2c^2 .

    Text Solution

    |

  2. Prove that: |1 1 1 1 1+x1 1 1 1+y|=x y .

    Text Solution

    |

  3. Evaluate: |1a a^2 1bb^2 1cc^2| .

    Text Solution

    |

  4. Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

    Text Solution

    |

  5. Prove that: |alphabetagammaalpha^2beta^2gamma^2beta+gammagamma+alphaal...

    Text Solution

    |

  6. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A,sinB+...

    Text Solution

    |

  7. In a A B C ,if|1 1 1 1+cosA1+cosB1+cosCcos^2A+cosBcos^2A+cosBcos^2+co...

    Text Solution

    |

  8. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  9. If x!=y!=z and |xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then prove that ...

    Text Solution

    |

  10. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |

  11. Using properties of determinants, show that |1a a^2-b c1bb^2-c a1cc...

    Text Solution

    |

  12. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  13. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  14. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  15. Show that: |x p q p x q q q x|=(x-p)(x^2+p x-2q^2) .

    Text Solution

    |

  16. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  17. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !| .

    Text Solution

    |

  18. Prove that: |x+y xx5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  19. Show that: |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p1+6p+3q|=1 .

    Text Solution

    |

  20. Show that: |a a+b a+b+c2a3a+2b4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3 .

    Text Solution

    |