Home
Class 12
MATHS
Show that : |x y z x^2y^2z^2x^3y^3z^3|=x...

Show that : `|x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot`

Text Solution

Verified by Experts

The correct Answer is:
Proved

To prove $$\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|=x y z(x-y)(y-z)(z-x) .$$ LHS $$=\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|=x y z\left|\begin{array}{ccc}1 & 1 & 1 \\ x & y & z \\ x^{2} & y^{2} & z^{2}\end{array}\right|$$ [taking `x, y` and `z` common from `C_{1}, C_{2}` and `C_{3}`, respectively]

On applying `C_{1} \rightarrow C_{1}-C_{2}` and then `C_{2} \rightarrow C_{2}-C_{3}` we get $$ \mathrm{LHS}=x y z\left|\begin{array}{ccc} 0 & 0 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+z)

Prove that |x^2x^2-(y-z)^2y z y^2y^2-(z-x)^2z x z^2z^2-(x-y)^2x y|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

x+y+z=1 x-2y+3z=2 5x-3y+z=3

Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zy,xy):}|=|{:(1,1,1),(x^2,y^2,z^2),(x^3,y^3,z^3):}|=(y-z)(z-x)(x-y)(yz+zy+xy)

What is ((x-y)^3+(y-z)^3+(z-x)^3)/(3(x-y)(y-z)(z-x)) equal to?

Prove that [(x^(2)+y^(2)+z^(2))/(x+y+z)]^(x+y+z)>x^(x)y^(y)z^(z)>[(x+y+z)/(3)]^(x+y+z)(x,y,z>0)

2x+3y+3z=5 x-2y+z=-4 3x-y-2z=3

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Prove that: |1 1 1 1 1+x1 1 1 1+y|=x y .

    Text Solution

    |

  2. Evaluate: |1a a^2 1bb^2 1cc^2| .

    Text Solution

    |

  3. Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

    Text Solution

    |

  4. Prove that: |alphabetagammaalpha^2beta^2gamma^2beta+gammagamma+alphaal...

    Text Solution

    |

  5. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A,sinB+...

    Text Solution

    |

  6. In a A B C ,if|1 1 1 1+cosA1+cosB1+cosCcos^2A+cosBcos^2A+cosBcos^2+co...

    Text Solution

    |

  7. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  8. If x!=y!=z and |xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then prove that ...

    Text Solution

    |

  9. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |

  10. Using properties of determinants, show that |1a a^2-b c1bb^2-c a1cc...

    Text Solution

    |

  11. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  12. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  13. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  14. Show that: |x p q p x q q q x|=(x-p)(x^2+p x-2q^2) .

    Text Solution

    |

  15. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  16. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !| .

    Text Solution

    |

  17. Prove that: |x+y xx5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  18. Show that: |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p1+6p+3q|=1 .

    Text Solution

    |

  19. Show that: |a a+b a+b+c2a3a+2b4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3 .

    Text Solution

    |

  20. Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z| .

    Text Solution

    |