Home
Class 12
MATHS
Prove that: |alphabetagammaalpha^2beta^2...

Prove that: `|alphabetagammaalpha^2beta^2gamma^2beta+gammagamma+alphaalpha+beta|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)` .

Text Solution

Verified by Experts

The correct Answer is:
Proved

$$\operatorname{LHS} \Delta=\left|\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right|$$ $$\Delta=\left|\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \alpha+\beta+\gamma & \alpha+\beta+\gamma & \alpha+\beta+\gamma\end{array}\right| \quad\left\}\right.$$ Applying $$\left.R_{3} \rightarrow R_{1}+R_{3}\right\}$$ $$=(\alpha+\beta+\gamma)\left|\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ 1 & 1 & 1\end{array}\right|$$ $$=(\alpha+\beta+\gamma)\left|\begin{array}{ccc}\alpha & \beta-\alpha & \gamma-\alpha \\ \alpha^{2} & \beta^{2}-\alpha^{2} & \gamma^{2}-\alpha^{2} \\ 1 & 0 & 0\end{array}\right| \quad\left\{\right.$$ Applying $$\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$$. $$=(\alpha+\beta+\gamma)(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{ccc}\alpha & 1 & 1 \\ \alpha^{2} & \beta+\alpha & \gamma+\alpha \\ 1 & 0 & 0\end{array}\right|$$ Taking out `(\beta-\alpha)` and `(\gamma-\alpha)` from `C_{2}` and `C_{3}` respectively. $$ \begin{aligned} ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove the following |(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta)|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that |[alpha,beta,gamma] ,[alpha^2,beta^2,gamma^2] , [beta+gamma, gamma+alpha, beta+alpha]| = (alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

|[1,alpha,alpha^3],[1,beta,beta^3],[1,gamma,gamma^3]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+ beta+gamma)

Prove that, gammaalpha ^ (2), beta ^ (2), gamma ^ (2) beta + alpha, gamma + alpha, alpha + beta] | = (beta-gamma) (gamma-alpha) (alpha-beta) ( alpha + beta + gamma)

Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=|{:(alpha,beta, gamma),(alpha^(2),beta^(2),gamma^(2)),(beta+gamma,gamma+alpha, alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

Prove that: tan(alpha-beta)+tan(beta-gamma)+tan (gamma-alpha) = tan(alpha-beta) tan (beta-gamma) tan (gamma-alpha) .

Show that |(1,alpha,alpha^3),(1,beta,beta^3),(1,gamma,gamma^3)|=(alpha-beta)(beta-gamma)(gamma-alpha)( alpha+beta+gamma)

Using peoperties of determinants in questions 11 to 15, prove that : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta+gamma)

Show that |[1,alpha,alpha^2],[1,beta,beta^2],[1,gamma,gamma^2]|=(alpha-beta)(beta-gamma)(gamma-alpha)

Show that | (1,1,1), (alpha ^ 2, beta ^ 2, gamma ^ 2), (alpha ^ 3, beta ^ 3, gamma ^ 3) | = (alpha-beta) (beta-gamma) (gamma-alpha) (alphabeta + betagamma + gammaalpha) |

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Evaluate: |1a a^2 1bb^2 1cc^2| .

    Text Solution

    |

  2. Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

    Text Solution

    |

  3. Prove that: |alphabetagammaalpha^2beta^2gamma^2beta+gammagamma+alphaal...

    Text Solution

    |

  4. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A,sinB+...

    Text Solution

    |

  5. In a A B C ,if|1 1 1 1+cosA1+cosB1+cosCcos^2A+cosBcos^2A+cosBcos^2+co...

    Text Solution

    |

  6. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  7. If x!=y!=z and |xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then prove that ...

    Text Solution

    |

  8. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |

  9. Using properties of determinants, show that |1a a^2-b c1bb^2-c a1cc...

    Text Solution

    |

  10. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  11. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  12. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  13. Show that: |x p q p x q q q x|=(x-p)(x^2+p x-2q^2) .

    Text Solution

    |

  14. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  15. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !| .

    Text Solution

    |

  16. Prove that: |x+y xx5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  17. Show that: |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p1+6p+3q|=1 .

    Text Solution

    |

  18. Show that: |a a+b a+b+c2a3a+2b4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3 .

    Text Solution

    |

  19. Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z| .

    Text Solution

    |

  20. Prove that: |1+a1 1 1 1+b1 1 1 1+c|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a...

    Text Solution

    |