Home
Class 12
MATHS
In a triangleABC, if |[1,1,1][1+sinA,1+s...

In a `triangleABC`, if `|[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A,sinB+sin^2B,sinC+sin^2C]|=0`, then prove that `triangleABC` is an isosceles triangle.

Text Solution

Verified by Experts

The correct Answer is:
Proved

$$ \Delta=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C \end{array}\right| $$ $$ ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B,sinC+sin^2C]|=0

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

If sinA+ sin B + sinC=(3sqrt(3))/2 , then: triangleABC , is

If sinA/sinB=sin(A-C)/sin(C-B) then

If cos A=(sinB)/(2 sin C) , then triangleABC is

If |[cos(A+B), -sin(A+B), cos2B], [sinA, cosA, sinB], [-cosA, sinA, cosB]|=0 , then B=

If A ,B and C are the angles of an equilateral triangle, then the value of |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C):}| is ...........

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

    Text Solution

    |

  2. Prove that: |alphabetagammaalpha^2beta^2gamma^2beta+gammagamma+alphaal...

    Text Solution

    |

  3. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A,sinB+...

    Text Solution

    |

  4. In a A B C ,if|1 1 1 1+cosA1+cosB1+cosCcos^2A+cosBcos^2A+cosBcos^2+co...

    Text Solution

    |

  5. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  6. If x!=y!=z and |xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then prove that ...

    Text Solution

    |

  7. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |

  8. Using properties of determinants, show that |1a a^2-b c1bb^2-c a1cc...

    Text Solution

    |

  9. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  10. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  11. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  12. Show that: |x p q p x q q q x|=(x-p)(x^2+p x-2q^2) .

    Text Solution

    |

  13. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  14. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !| .

    Text Solution

    |

  15. Prove that: |x+y xx5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  16. Show that: |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p1+6p+3q|=1 .

    Text Solution

    |

  17. Show that: |a a+b a+b+c2a3a+2b4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3 .

    Text Solution

    |

  18. Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z| .

    Text Solution

    |

  19. Prove that: |1+a1 1 1 1+b1 1 1 1+c|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a...

    Text Solution

    |

  20. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then fin...

    Text Solution

    |