Home
Class 12
MATHS
If x!=y!=z and |xx^2 1+x^3y y^2 1+y^3z z...

If `x!=y!=z` and `|xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0` , then prove that `x y z=-1` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that if the determinant \[ D = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ 1+x^3 & 1+y^3 & 1+z^3 \end{vmatrix} = 0 \] then \(xyz = -1\). ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ 1+x^3 & 1+y^3 & 1+z^3 \end{vmatrix} \] ### Step 2: Simplify the Determinant We can separate the last row into two parts: \[ D = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ 1 & 1 & 1 \end{vmatrix} + \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} \] ### Step 3: Factor Out Common Terms Notice that we can factor out \(xyz\) from the first determinant: \[ D = xyz \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} + \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} \] ### Step 4: Use Properties of Determinants The determinant of the second matrix can be expressed as: \[ \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = (x-y)(y-z)(z-x) \] ### Step 5: Combine the Results So we have: \[ D = xyz \cdot 0 + (x-y)(y-z)(z-x) = 0 \] ### Step 6: Analyze the Conditions Since \(x \neq y \neq z\), the term \((x-y)(y-z)(z-x) \neq 0\). Therefore, for the determinant \(D\) to be zero, we must have: \[ 1 + xyz = 0 \] ### Step 7: Conclude the Proof This implies: \[ xyz = -1 \] Thus, we have proved that if the determinant is zero, then \(xyz = -1\). ---

To solve the problem, we need to prove that if the determinant \[ D = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ 1+x^3 & 1+y^3 & 1+z^3 \end{vmatrix} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2

If x,y,z are different and Delta=det[[x,x^(2),1+x^(3)y,y^(2),1+y^(3)z,z^(2),1+z^(3)]]=0, then prove that 1+xyz=0,

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

If cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y+z= 3/2, then prove that x=y=z

If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0 and x, y, z are all different then prove that xyz=-1

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. In a A B C ,if|1 1 1 1+cosA1+cosB1+cosCcos^2A+cosBcos^2A+cosBcos^2+co...

    Text Solution

    |

  2. Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,...

    Text Solution

    |

  3. If x!=y!=z and |xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then prove that ...

    Text Solution

    |

  4. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |

  5. Using properties of determinants, show that |1a a^2-b c1bb^2-c a1cc...

    Text Solution

    |

  6. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  7. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  8. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  9. Show that: |x p q p x q q q x|=(x-p)(x^2+p x-2q^2) .

    Text Solution

    |

  10. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  11. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !| .

    Text Solution

    |

  12. Prove that: |x+y xx5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  13. Show that: |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p1+6p+3q|=1 .

    Text Solution

    |

  14. Show that: |a a+b a+b+c2a3a+2b4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3 .

    Text Solution

    |

  15. Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z| .

    Text Solution

    |

  16. Prove that: |1+a1 1 1 1+b1 1 1 1+c|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a...

    Text Solution

    |

  17. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then fin...

    Text Solution

    |

  18. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

    Text Solution

    |

  19. Prove that: |(a,b, ax+by),(b,c,bx+cy), (ax+by, bx+cy,0)|=(b^2-a c)(a x...

    Text Solution

    |

  20. Without expanding the determinant, show that (a+b+c) is a factor of...

    Text Solution

    |