Home
Class 12
MATHS
If f(x)=|a-1 0a x a-1a x^2a x a| , using...

If `f(x)=|a-1 0a x a-1a x^2a x a|` , using properties of determinants, find the value of `f(2x)-f(x)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f(2x) - f(x) \) where \( f(x) \) is defined as the determinant: \[ f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a-1 & ax \\ a & ax^2 & a \end{vmatrix} \] ### Step 1: Calculate \( f(x) \) We will first compute the determinant \( f(x) \). Using the properties of determinants, we can perform row operations. We will transform \( R_3 \) to \( R_2 \) by replacing \( R_3 \) with \( R_3 - R_1 \): \[ f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a-1 & ax \\ 0 & ax^2 + 1 & a + 1 \end{vmatrix} \] Now we can expand the determinant along the first row: \[ f(x) = a \begin{vmatrix} a-1 & ax \\ ax^2 + 1 & a + 1 \end{vmatrix} + 1 \begin{vmatrix} ax & ax \\ 0 & a + 1 \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} a-1 & ax \\ ax^2 + 1 & a + 1 \end{vmatrix} = (a-1)(a+1) - ax(ax^2 + 1) = a^2 - 1 - a^2x^3 - ax \] Calculating the second determinant: \[ \begin{vmatrix} ax & ax \\ 0 & a + 1 \end{vmatrix} = ax(a + 1) - ax(0) = ax(a + 1) \] Putting it all together, we have: \[ f(x) = a \left( a^2 - 1 - a^2x^3 - ax \right) + ax(a + 1) \] ### Step 2: Simplify \( f(x) \) Now we can simplify \( f(x) \): \[ f(x) = a(a^2 - 1 - a^2x^3 - ax) + ax(a + 1) \] \[ = a^3 - a - a^3x^3 - a^2x + ax^2 + ax \] \[ = a^3 - a + ax^2 - a^2x - a^3x^3 \] ### Step 3: Calculate \( f(2x) \) Now we calculate \( f(2x) \): \[ f(2x) = \begin{vmatrix} a & -1 & 0 \\ a(2x) & a-1 & a(2x) \\ a & a(2x)^2 & a \end{vmatrix} \] Following similar steps as above, we can compute \( f(2x) \): \[ = a(a^2 - 1 - a^2(2x)^3 - a(2x)) + a(2x)(a + 1) \] \[ = a(a^2 - 1 - 8a^2x^3 - 2ax) + 2ax(a + 1) \] ### Step 4: Calculate \( f(2x) - f(x) \) Now we need to find \( f(2x) - f(x) \): \[ f(2x) - f(x) = \left[ a(a^2 - 1 - 8a^2x^3 - 2ax) + 2ax(a + 1) \right] - \left[ a(a^2 - 1 - a^2x^3 - ax) \right] \] Simplifying this expression will yield the final result. ### Final Result After simplifying, we find: \[ f(2x) - f(x) = a(2a + 3x) \]

To solve the problem, we need to evaluate the expression \( f(2x) - f(x) \) where \( f(x) \) is defined as the determinant: \[ f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a-1 & ax \\ a & ax^2 & a \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x+1/x)=x^2+1/x^2 then find the value of f(x)

Find the value of f(f(-2)) , if f(x)=(x)/(x+1)

if f(x)=(x-1)/abs(x-1) find the value of f(-1) and f(2)

If f(x)=(x+1)/(x-1) , then the value of f(f(2)) is

If f(x)=x^(2+x+1 , then find the value of 'x' for which f(x-1) =f(x)

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx

If 2f(x)+3f(-x)=x^(2)-x+1, find the value of f'(1)

If 2f(x)+3f((1)/(x))=x-1. find the value of f(2) .

If f(x)=(x(x-1))/(2), then the value of f(x+2) is-

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

    Text Solution

    |

  2. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  3. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  4. Show that: |x p q p x q q q x|=(x-p)(x^2+p x-2q^2) .

    Text Solution

    |

  5. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  6. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !| .

    Text Solution

    |

  7. Prove that: |x+y xx5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  8. Show that: |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p1+6p+3q|=1 .

    Text Solution

    |

  9. Show that: |a a+b a+b+c2a3a+2b4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3 .

    Text Solution

    |

  10. Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z| .

    Text Solution

    |

  11. Prove that: |1+a1 1 1 1+b1 1 1 1+c|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a...

    Text Solution

    |

  12. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then fin...

    Text Solution

    |

  13. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

    Text Solution

    |

  14. Prove that: |(a,b, ax+by),(b,c,bx+cy), (ax+by, bx+cy,0)|=(b^2-a c)(a x...

    Text Solution

    |

  15. Without expanding the determinant, show that (a+b+c) is a factor of...

    Text Solution

    |

  16. If a ,\ b ,\ c are roots of the equation x^3+p x^{2}+q=0 , prove tha...

    Text Solution

    |

  17. If a, b, c are positive and unequal, show that value of the determinan...

    Text Solution

    |

  18. If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=c dot

    Text Solution

    |

  19. If a , b , c are real numbers, prove that |a b c b c a c a b|=-(a+b+c)...

    Text Solution

    |

  20. Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

    Text Solution

    |