Home
Class 12
MATHS
Show that: |x p q p x q q q x|=(x-p)(x^2...

Show that: `|x p q p x q q q x|=(x-p)(x^2+p x-2q^2)` .

Text Solution

AI Generated Solution

The correct Answer is:
To show that the determinant \[ D = \begin{vmatrix} x & p & q \\ p & x & q \\ q & q & x \end{vmatrix} \] is equal to \((x - p)(x^2 + px - 2q^2)\), we will follow these steps: ### Step 1: Set up the determinant We start with the determinant \(D\): \[ D = \begin{vmatrix} x & p & q \\ p & x & q \\ q & q & x \end{vmatrix} \] ### Step 2: Transform the first column We will perform the operation \(C_1 \leftarrow C_1 - C_2\): \[ D = \begin{vmatrix} x - p & p & q \\ p - x & x & q \\ q - q & q & x \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} x - p & p & q \\ p - x & x & q \\ 0 & q & x \end{vmatrix} \] ### Step 3: Factor out \(x - p\) Notice that we can factor out \((x - p)\) from the first column: \[ D = (x - p) \begin{vmatrix} 1 & p & q \\ \frac{p - x}{x - p} & x & q \\ 0 & q & x \end{vmatrix} \] ### Step 4: Simplify the second row Now we can simplify the second row further by transforming it. We will perform the operation \(R_2 \leftarrow R_2 + R_1\): \[ D = (x - p) \begin{vmatrix} 1 & p & q \\ 0 & x + p & q \\ 0 & q & x \end{vmatrix} \] ### Step 5: Expand the determinant Now we can expand this determinant along the first column: \[ D = (x - p) \left(1 \cdot \begin{vmatrix} x + p & q \\ q & x \end{vmatrix}\right) \] Calculating the 2x2 determinant: \[ \begin{vmatrix} x + p & q \\ q & x \end{vmatrix} = (x + p)x - q^2 = x^2 + px - q^2 \] ### Step 6: Combine results Thus, we have: \[ D = (x - p)(x^2 + px - q^2) \] ### Step 7: Adjust for the factor of \(2\) Notice that we need to adjust for the factor of \(2\) in \(2q^2\): \[ D = (x - p)(x^2 + px - 2q^2) \] ### Conclusion Therefore, we have shown that: \[ D = (x - p)(x^2 + px - 2q^2) \]

To show that the determinant \[ D = \begin{vmatrix} x & p & q \\ p & x & q \\ q & q & x \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

If the lines p_1 x + q_1 y = 1, p_2 x + q_2 y=1 and p_3 x + q_3 y = 1 be concurrent, show that the points (p_1 , q_1), (p_2 , q_2 ) and (p_3 , q_3) are colliner.

If the equation x^(2)+px+q=0 and x^(2)+p'x+q'=0 have a common root show that it must be equal to (pq'-p'q)/(q-q') or (q-q')/(p'-p)

If p,q are real p!=q, then show that the roots of the equation (p-q)x^(2)+5(p+q)x-2(p-q)=0 are real and unequal.

If p, a,rare real and p!=q ,then show that the roots of the equation (p-q)x^(2)+5(p+q)x-2(p-q)=0 are real and unequal.

If p,qr are real and p!=q, then show that the roots of the equation (p-q)x^(2)+5(p+q)x-2(p-q=0 are real and unequal.

The polynomial p(x) is such that for any polynomial q(x) we have p(q(x))=q(p(x)) then p(x) is

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of ...

    Text Solution

    |

  2. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  3. Show that: |x p q p x q q q x|=(x-p)(x^2+p x-2q^2) .

    Text Solution

    |

  4. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  5. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !| .

    Text Solution

    |

  6. Prove that: |x+y xx5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  7. Show that: |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p1+6p+3q|=1 .

    Text Solution

    |

  8. Show that: |a a+b a+b+c2a3a+2b4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3 .

    Text Solution

    |

  9. Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z| .

    Text Solution

    |

  10. Prove that: |1+a1 1 1 1+b1 1 1 1+c|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a...

    Text Solution

    |

  11. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then fin...

    Text Solution

    |

  12. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

    Text Solution

    |

  13. Prove that: |(a,b, ax+by),(b,c,bx+cy), (ax+by, bx+cy,0)|=(b^2-a c)(a x...

    Text Solution

    |

  14. Without expanding the determinant, show that (a+b+c) is a factor of...

    Text Solution

    |

  15. If a ,\ b ,\ c are roots of the equation x^3+p x^{2}+q=0 , prove tha...

    Text Solution

    |

  16. If a, b, c are positive and unequal, show that value of the determinan...

    Text Solution

    |

  17. If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=c dot

    Text Solution

    |

  18. If a , b , c are real numbers, prove that |a b c b c a c a b|=-(a+b+c)...

    Text Solution

    |

  19. Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

    Text Solution

    |

  20. Using properties of determinants. Prove that |3a-a+b-a+c-b+a3b-b+c-c+a...

    Text Solution

    |