Home
Class 12
MATHS
If m in N and mgeq2 prove that: |1 1 1\...

If `m in N` and `mgeq2` prove that: `|1 1 1\ ^m C_1\ ^(m+1)C_1\ ^(m+2)C_1\ ^m C_2\ ^(m+1)C_2\ ^(m+2)C_2|=1` .

Text Solution

Verified by Experts

The correct Answer is:
Proved

$$ \left|\begin{array}{ccc} 1 & 1 & 1 \\ { }^{m} C_{1} & { }^{\mathrm{m}+1} C_{1} & { }^{m+2} C_{1} \\ { }^{m} C_{2} & { }^{m+1} C_{2} & { }^{m+2} C_{2} \end{array}\right|=\left|\begin{array}{ccc} 1 & 1 & 1 \\ { }^{m} C_{1} & { }^{m+1} C_{1} & { }^{m+1} C_{0}+{ }^{m+1} C_{1} \\ ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

The value of determinant |1 1 1^m C_1^(m+1)C_1^(m+2)C_1^m C_2^(m+1)C_2^(m+2)C_2| is equal to 1 b. -1 c. 0 d. none of these

If minR and mgt=2 then prove that |[1,1,1] , [C(m,1), C(m+1,1), c(m+2,1)] , [C(m,2), C(m+1,2), C(m+2,2)]|=1

If m in N and m>=2, prove that: det[[1,1m_(C_(1)),m+1_(C_(1)),m+2_(C_(1))m_(C_(2)),m+1_(C_(2)),m+2_(C_(2))]]=1

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

Prove that mC_(1)^(n)C_(m)-^(m)C_(2)^(2n)C_(m)+^(m)C_(3)^(3n)C_(m)-...=(-1)^(m-1)n^(m)

Using binomial theorem (without using the formula for sim nC_(r)), prove that ^nC_(4)+^(m)C_(2)-^(m)C_(1)^(n)C_(2)=^(m)C_(4)-^(m+n)C_(1)^(m)C_(3)+^(m+n)C_(2)^(m)C_(2)-^(m+n)C_(3)^(m)C_(1)+^(m+n)C_(4)

^(n)C_(m)+^(n-1)C_(m)+^(n-2)C_(m)+............+^(m)C_(m)

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. If f(x)=|a-1 0a x a-1a x^2a x a| , using properties of determinants...

    Text Solution

    |

  2. Show that: |x p q p x q q q x|=(x-p)(x^2+p x-2q^2) .

    Text Solution

    |

  3. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  4. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !| .

    Text Solution

    |

  5. Prove that: |x+y xx5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  6. Show that: |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p1+6p+3q|=1 .

    Text Solution

    |

  7. Show that: |a a+b a+b+c2a3a+2b4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3 .

    Text Solution

    |

  8. Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z| .

    Text Solution

    |

  9. Prove that: |1+a1 1 1 1+b1 1 1 1+c|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a...

    Text Solution

    |

  10. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then fin...

    Text Solution

    |

  11. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

    Text Solution

    |

  12. Prove that: |(a,b, ax+by),(b,c,bx+cy), (ax+by, bx+cy,0)|=(b^2-a c)(a x...

    Text Solution

    |

  13. Without expanding the determinant, show that (a+b+c) is a factor of...

    Text Solution

    |

  14. If a ,\ b ,\ c are roots of the equation x^3+p x^{2}+q=0 , prove tha...

    Text Solution

    |

  15. If a, b, c are positive and unequal, show that value of the determinan...

    Text Solution

    |

  16. If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=c dot

    Text Solution

    |

  17. If a , b , c are real numbers, prove that |a b c b c a c a b|=-(a+b+c)...

    Text Solution

    |

  18. Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

    Text Solution

    |

  19. Using properties of determinants. Prove that |3a-a+b-a+c-b+a3b-b+c-c+a...

    Text Solution

    |

  20. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |