Home
Class 12
MATHS
Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ...

Evaluate: `=|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !|` .

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ D = \begin{vmatrix} 10! & 11! & 12! \\ 11! & 12! & 12! \\ 12! & 12! & 13! \\ 12! & 13! & 14! \end{vmatrix} \] we can follow these steps: ### Step 1: Rewrite the Factorials We can express the factorials in terms of \(10!\): - \(11! = 11 \times 10!\) - \(12! = 12 \times 11! = 12 \times 11 \times 10!\) - \(12! = 12 \times 11!\) - \(13! = 13 \times 12!\) - \(14! = 14 \times 13!\) Thus, we can rewrite the determinant as: \[ D = \begin{vmatrix} 10! & 11 \times 10! & 12 \times 11 \times 10! \\ 11 \times 10! & 12 \times 11 \times 10! & 12 \times 11 \times 10! \\ 12 \times 11 \times 10! & 12 \times 11 \times 10! & 13 \times 12 \times 11 \times 10! \\ 12 \times 11 \times 10! & 13 \times 12 \times 11 \times 10! & 14 \times 13 \times 12 \times 11 \times 10! \end{vmatrix} \] ### Step 2: Factor Out \(10!\) Now, we can factor \(10!\) out of each column: \[ D = 10!^3 \begin{vmatrix} 1 & 11 & 12 \times 11 \\ 11 & 12 \times 11 & 12 \times 11 \\ 12 \times 11 & 12 \times 11 & 13 \times 12 \\ 12 \times 11 & 13 \times 12 & 14 \times 13 \end{vmatrix} \] ### Step 3: Simplify the Matrix Now, we can simplify the determinant. Notice that the second and third columns have similar terms. We can perform row operations to simplify it further. 1. Subtract the first row from the second and third rows: \[ D = 10!^3 \begin{vmatrix} 1 & 11 & 12 \times 11 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{vmatrix} \] ### Step 4: Calculate the Determinant Now, we can calculate the determinant of the simplified matrix: \[ D = 10!^3 \cdot 1 \cdot \begin{vmatrix} 1 & 12 \times 11 \\ 1 & 2 \end{vmatrix} \] Calculating this 2x2 determinant: \[ = 10!^3 \cdot (1 \cdot 2 - 1 \cdot 12 \times 11) = 10!^3 \cdot (2 - 12 \times 11) \] ### Step 5: Final Calculation Now, substituting the values: \[ = 10!^3 \cdot (2 - 132) = 10!^3 \cdot (-130) \] ### Final Answer Thus, the value of the determinant is: \[ D = -130 \cdot 10!^3 \]

To evaluate the determinant \[ D = \begin{vmatrix} 10! & 11! & 12! \\ 11! & 12! & 12! \\ 12! & 12! & 13! \\ 12! & 13! & 14! ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Evaluate: o+=det[[10!,11!,12!11!,12!,13!12!,13!,14!]]

12 14 17 13 8 14 21 13 4 ?

Evaluate (a) i^10 + i^11 + i^12+i^13

14 observations are 10, 11, 11, 12, 13, 14, 12, 13, 10, 12, 12, 14, 14 and 15. What is the median of the given observations?

The value of the determinant |(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| , is

8 : 12 :: 9 : 13 :: 10 : · 14 :: ?

Let N=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| Then N/((10!)(11!)(12!))= ______

Let D=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| then D/((10!)^(3)-260 equals

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Show that: |x p q p x q q q x|=(x-p)(x^2+p x-2q^2) .

    Text Solution

    |

  2. If m in N and mgeq2 prove that: |1 1 1\ ^m C1\ ^(m+1)C1\ ^(m+2)C1\ ^m...

    Text Solution

    |

  3. Evaluate: =|10 ! 11 ! 12 ! 11 ! 12 ! 13 ! 12 ! 13 ! 14 !| .

    Text Solution

    |

  4. Prove that: |x+y xx5x+4y4x2x 10 x+8y8x3x|=x^3 .

    Text Solution

    |

  5. Show that: |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p1+6p+3q|=1 .

    Text Solution

    |

  6. Show that: |a a+b a+b+c2a3a+2b4a+3b+2c3a6a+3b 10 a+6b+3c|=a^3 .

    Text Solution

    |

  7. Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z| .

    Text Solution

    |

  8. Prove that: |1+a1 1 1 1+b1 1 1 1+c|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a...

    Text Solution

    |

  9. If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then fin...

    Text Solution

    |

  10. Prove that: |(b+c)^2a^2a^2b^2(c+a)^2b^2c^2c^2(a+b)^2|=2a b c(a+b+c)^3

    Text Solution

    |

  11. Prove that: |(a,b, ax+by),(b,c,bx+cy), (ax+by, bx+cy,0)|=(b^2-a c)(a x...

    Text Solution

    |

  12. Without expanding the determinant, show that (a+b+c) is a factor of...

    Text Solution

    |

  13. If a ,\ b ,\ c are roots of the equation x^3+p x^{2}+q=0 , prove tha...

    Text Solution

    |

  14. If a, b, c are positive and unequal, show that value of the determinan...

    Text Solution

    |

  15. If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=c dot

    Text Solution

    |

  16. If a , b , c are real numbers, prove that |a b c b c a c a b|=-(a+b+c)...

    Text Solution

    |

  17. Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

    Text Solution

    |

  18. Using properties of determinants. Prove that |3a-a+b-a+c-b+a3b-b+c-c+a...

    Text Solution

    |

  19. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  20. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |