Home
Class 12
MATHS
If a , b , c are real numbers, prove tha...

If `a , b , c` are real numbers, prove that `|a b c b c a c a b|=-(a+b+c)(c+b w+c w^2)(a+b w^2+c w),` where `w` is a complex cube root of unity.

Text Solution

Verified by Experts

The correct Answer is:
Proved

$$ L. H. S. =\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$$ $$ \text { Applying } C_{1} \rightarrow C_{1}+C_{2}+C_{3}$$ $$ \begin{aligned} &=\left|\begin{array}{lll} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

If f(x)=a+b x+c x^2AAa ,b ,c in R and a ,b ,c are distinct, then value of |a b c b c a c a b| is (where omega&omega^2 are complex cube roots of unity) f(1)f(omega)f(omega^2) (b) -f(omega)f(omega^2) -f(1)f(omega)f(omega^2) (d) f(omega)f(omega^2)

18.Prove that det[[b,a,cb,a,cc,b,a]]=(a+b+c)(a+b omega+c omega^(2))(a+b omega^(2)+c omega): where ,omega is a nonreal cube root of unity.

If a,b,c are real then ([a,b,cb,c,ac,a,b])=-(a+b+c)(a+b omega+c omega^(2))(a+b omega^(2)+c omega)

Prove that a^3 + b^3 + c^3 – 3abc = (a + b + c) (a + bomega + comega^2) (a + bomega^2 + "c"omega) , where omega is an imaginary cube root of unity.

If w is a complex cube root of unity. |(a,b,c),(b,c,a),(c,a,b)| = -(a +b +c) (a + bk + ck^(2)) (a + bk^(2) + ck) , then k equals

Let a,b,c,d be real numbers such that (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)=(2)/(omega) where omega is non real cube root of unity choose the correct answer.abc+bcd+acd+abd is equal to

If a,b,c are in GP,where a,are positive,then the equation ax^(2)+bx+c=0 has (a) real roots (b) imaginary roots c) ratio of roots =1:w where w is a nonreal cube root of unity (d) ratio of roots =b:ac

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. If a, b, c are positive and unequal, show that value of the determinan...

    Text Solution

    |

  2. If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=c dot

    Text Solution

    |

  3. If a , b , c are real numbers, prove that |a b c b c a c a b|=-(a+b+c)...

    Text Solution

    |

  4. Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

    Text Solution

    |

  5. Using properties of determinants. Prove that |3a-a+b-a+c-b+a3b-b+c-c+a...

    Text Solution

    |

  6. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  7. Using properties of determinants, solve the following for x: |x-2 ...

    Text Solution

    |

  8. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  9. If a , b , c are all positive and are p t h ,q t ha n dr t h terms of ...

    Text Solution

    |

  10. If x+y+z=0 prove that |a x b y c z c y a z b x b z c x a y|=x y z|a b ...

    Text Solution

    |

  11. Prove that: |b c-a^2c a-b^2a b-c^2c a-b^2a b-c^2b c-a^2a b-c^2b c-a^2c...

    Text Solution

    |

  12. f(x)=|(secx,cos x,sec^2x + cot x cosecx),(cos^2x,cos^2x,cosec^2 x),(1,...

    Text Solution

    |

  13. Let "Delta"r=|r x(n(n+1))/2 2r-1y n^2 3r-2z(n(3n-1))/2| . Show that su...

    Text Solution

    |

  14. If "Delta"r=|2^(r-1)2. 3^(r-1)4. 5^(r-1)x y z2^n-1 3^n-1 5^n-1|dot Sho...

    Text Solution

    |

  15. If m is a positive integer and Dr=|(2r-1,\ ^m Cr,1),(m^2-1, 2^m ,m+1...

    Text Solution

    |

  16. Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b,...

    Text Solution

    |

  17. Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y...

    Text Solution

    |

  18. Prove that: |-2a a+b a+c b+a-2bb+cc+a c+b-2c|=4(a+b)(b+c)(c+a)

    Text Solution

    |

  19. Without expanding, show that the value of each of the following det...

    Text Solution

    |

  20. Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-...

    Text Solution

    |