Home
Class 12
MATHS
If m is a positive integer and Dr=|(2r...

If `m` is a positive integer and `D_r=|(2r-1,\ ^m C_r,1),(m^2-1, 2^m ,m+1),(sin^2(m^2),sin^2(m),sin^2(m+1))|` . Prove that `sum_(r=0)^m D_r=0` .

Text Solution

Verified by Experts

\begin{aligned} D_{r} &=\left|\begin{array}{ccc} 2 r-1 & { }^{m} C_{r} & 1 \\ m^{2}-1 & 2^{m} & m+1 \\ \sin \left(m^{2}\right) & \sin ^{2}(m) & \sin ^{2}(m+1) \end{array}\right| \\ \\ D_{r} &=\left|\begin{array}{ccc} \sum_{r=0}^{m}(2 r-1) & \sum_{r=0}^{m} C_{r} & \sum_{r=0}^{m} 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Let m be a positive integer and Delta r=det[[m^(2)-1,*^(m)C_(r),1m^(2)-1,2^(m),m+1sin^(2)(m^(2)),sin^(2)m,sin(m^(2))]] of sum_(r=0)^(m)Delta r

Let t be a positive integer and |((2t-1),m^2-1,cos^2(m)),(mC_t,2^m,cos^2(m)),(1,m+1,cos(m^2))| then the value of sum_(t=0)^m Delta_t is equal to

If k and n are positive integers and s_(k)=1^(k)+2^(k)+3^(k)+...+n^(k), then prove that sum_(r=1)^(m)m+1C_(r)s_(r)=(n+1)^(m+1)-(n+1)

2m-(1)/(2m)=2 , m!=0, in m^(2)+(1)/(16m^(2)) =?

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

(m+2)sin theta+(2m-1)cos theta=2m+1 then tan theta is

Prove that sum_(r=1)^(m-1)(2r^(2)-r(m-2)+1)/((m-r)^(m)C_(r))=-(1)/(m)

sum_(r=1)^(n)r^(2)-sum_(m=1)^(n)sum_(r=1)^(m)r is equal to

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Let "Delta"r=|r x(n(n+1))/2 2r-1y n^2 3r-2z(n(3n-1))/2| . Show that su...

    Text Solution

    |

  2. If "Delta"r=|2^(r-1)2. 3^(r-1)4. 5^(r-1)x y z2^n-1 3^n-1 5^n-1|dot Sho...

    Text Solution

    |

  3. If m is a positive integer and Dr=|(2r-1,\ ^m Cr,1),(m^2-1, 2^m ,m+1...

    Text Solution

    |

  4. Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b,...

    Text Solution

    |

  5. Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y...

    Text Solution

    |

  6. Prove that: |-2a a+b a+c b+a-2bb+cc+a c+b-2c|=4(a+b)(b+c)(c+a)

    Text Solution

    |

  7. Without expanding, show that the value of each of the following det...

    Text Solution

    |

  8. Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-...

    Text Solution

    |

  9. Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

    Text Solution

    |

  10. Prove: |(1,a, b c),(1,b ,c a),(1,c ,a b)|=|(1,a ,a^2),( 1,b,b^2),( 1,c...

    Text Solution

    |

  11. Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b...

    Text Solution

    |

  12. Prove: |(x+4,x,x),(x,x+4,x),(x,x,x+4)|=16(3x+4)

    Text Solution

    |

  13. Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=

    Text Solution

    |

  14. Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-...

    Text Solution

    |

  15. Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

    Text Solution

    |

  16. Prove: |1a a^2a^2 1a a a^2 1|=(a^3-1)^2

    Text Solution

    |

  17. Prove: |b+c a a b c+a b cc a+b|=4a b c

    Text Solution

    |

  18. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  19. Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

    Text Solution

    |

  20. Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b...

    Text Solution

    |