Home
Class 12
MATHS
Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q...

Show that `|[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=`

Text Solution

Verified by Experts

`Delta=|[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|`
Applying `underset(2)(R)->underset(2)(R)-2underset(1)(R)`
`underset(3)(R)->underset(3)(R)-3underset(1)(R)`
`|[1,1+p,1+p+q],[0,1,-1+p],[0,3,-2+3p]|`
...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Show that det[[1,1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=

Using properties of determinants,prove the det[[1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=1

Show that: |11+p1+p+q23+2p1+3p+2q36+3p1+6p+3q|=1

Using properties of determinants.Prove that det[[2,3+2p,1+3p+2q3,6+3p,10+6p+3q]]=1

If the lines p_1x+q_1y=1,p_2x+q_2y=1a n dp_3x+q_3y=1, be concurrent, show that the point (p_1, q_1),(p_2, q_2)a n d(p_3, q_3) are collinear.

If the lines p_1 x + q_1 y = 1, p_2 x + q_2 y=1 and p_3 x + q_3 y = 1 be concurrent, show that the points (p_1 , q_1), (p_2 , q_2 ) and (p_3 , q_3) are colliner.

If [ [a + 1, a + 2, a + p],[ a + 2, a + 3, a + q],[ a + 3, a + 4, a + r] ] = 0 , then p , q , r are in : [ (1) A P (2) GP (3) H P (4) none

If P=[[1,2,-3] , [3,-1,2] , [-2,1,3]], Q=[[2,3,1] ,[3,1,2] , [1,2,3]] then find the matrix R such that P+Q+R is a zero matrix

If 2x+1=15;3y-2=16 if x=p(mod 5),y=q(mod 5) then the value of p, q are (i) p=2,q=3 (ii) p=2,q=1 (iii) p=3,q=2 (iv) p=4,q=1

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b...

    Text Solution

    |

  2. Prove: |(x+4,x,x),(x,x+4,x),(x,x,x+4)|=16(3x+4)

    Text Solution

    |

  3. Show that |[1,1+p,1+p+q],[2,3+2p,1+3p+2q],[3,6+3p,1+6p+3q]|=

    Text Solution

    |

  4. Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-...

    Text Solution

    |

  5. Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

    Text Solution

    |

  6. Prove: |1a a^2a^2 1a a a^2 1|=(a^3-1)^2

    Text Solution

    |

  7. Prove: |b+c a a b c+a b cc a+b|=4a b c

    Text Solution

    |

  8. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  9. Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

    Text Solution

    |

  10. Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b...

    Text Solution

    |

  11. Prove: |(-bc, b^2+b c,c^2+bc), (a^2+a c,-a c,c^2+a c),( a^2+a b,b^2+a ...

    Text Solution

    |

  12. |[x+lambda, 2x, 2x], [2x, x+lambda, 2x], [2x, 2x, x+lambda]| =(5x+ lam...

    Text Solution

    |

  13. सारणिकों के गुणधर्मो का प्रयोग करके प्रश्न 6 से 14 तक को सिद्ध कीजिए: ...

    Text Solution

    |

  14. Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

    Text Solution

    |

  15. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  16. Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3+3a^2

    Text Solution

    |

  17. Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

    Text Solution

    |

  18. |[y+z ,x, y],[ z+y, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

    Text Solution

    |

  19. Using properties of determinants, prove that |(a+x, y, z),( x, a+y, z...

    Text Solution

    |

  20. Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

    Text Solution

    |