Home
Class 12
MATHS
|[x+lambda, 2x, 2x], [2x, x+lambda, 2x],...

`|[x+lambda, 2x, 2x], [2x, x+lambda, 2x], [2x, 2x, x+lambda]| =(5x+ lambda)(lambda-x)^(2)`

Text Solution

Verified by Experts

`Delta=|[x+lambda, 2x, 2x], [2x, x+lambda, 2x], [2x, 2x, x+lambda]|`
`underset(1)(R)->underset(1)(R)+underset(2)(R)+underset(3)(R)`
`implies |[5x+lambda, 5x+lamda, 5x+lambda], [2x, x+lambda, 2x], [2x, 2x, x+lambda]|`
`implies (5x+lambda)|[1,1,1], [2x, x+lambda, 2x], [2x, 2x, x+lambda]|`
...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

the values of lambda for which (lambda^(2)-3 lambda+2)x^(2)+(lambda^(2)-5 lambda+6)+lambda^(2)-4=0 is identity in x is

The value of lambda for which the equation lambda^2 - 4lambda + 3+ (lambda^2 + lambda -2)x + 6x^2 - 5x^3 =0 will have two roots equal to zero is

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

Evaluate the following : |{:(x+lambda,x,x),(x,x+lambda,x),(x,x,x+lambda):}|

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

If the equation (lambda^(2)-5 lambda+6)x^(2)+(lambda^(2)-3 lambda+2)x+(lambda^(2)-4)=0 is satisfied by more then two values of x then lambda=

For any lambda in R, the locus x^(2)+y^(2)-2 lambda x-2 lambda y+lambda^(2)=0 touches the line

The values of lambda for which the function f(x)=lambda x^(3)-2 lambda x^(2)+(lambda+1)x+3 lambda is increasing through out number line (a) lambda in(-3,3)( b) lambda in(-3,0)( c )lambda in(0,3) (d) lambda in(1,3)

If the two roots of the equation (lambda-2)(x^2+x+1)^2-(lambda+2)(x^4+x^2+1) are real and equal for lambda=lambda_1,lambda_2 then lambda_1+lambda_2=0 (b) |lambda_1-lambda_2|=6 (c) lambda_1+lambda_2=32 (d) all of these

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b...

    Text Solution

    |

  2. Prove: |(-bc, b^2+b c,c^2+bc), (a^2+a c,-a c,c^2+a c),( a^2+a b,b^2+a ...

    Text Solution

    |

  3. |[x+lambda, 2x, 2x], [2x, x+lambda, 2x], [2x, 2x, x+lambda]| =(5x+ lam...

    Text Solution

    |

  4. सारणिकों के गुणधर्मो का प्रयोग करके प्रश्न 6 से 14 तक को सिद्ध कीजिए: ...

    Text Solution

    |

  5. Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

    Text Solution

    |

  6. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  7. Prove: |(1+a,1, 1),( 1, 1+a, 1),(1, 1, 1+a)|=a^3+3a^2

    Text Solution

    |

  8. Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

    Text Solution

    |

  9. |[y+z ,x, y],[ z+y, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

    Text Solution

    |

  10. Using properties of determinants, prove that |(a+x, y, z),( x, a+y, z...

    Text Solution

    |

  11. Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

    Text Solution

    |

  12. Without expanding, prove that |(a, b, c),( x, y, z),( p, q ,r)|=|(x, y...

    Text Solution

    |

  13. Show that |x+1x+2x+a x+2x+3x+b x+3x+4x+c|=0 where a ,\ b ,\ c are in A...

    Text Solution

    |

  14. Show that [[x-3,x-4,x-alpha],[x-2,x-3,x-beta],[x-1,x-2,x-gamma]]=0 whe...

    Text Solution

    |

  15. If a ,\ b ,\ c are real numbers such that |b+cc+a a+b c+a a+bb+c a+...

    Text Solution

    |

  16. a!=p , b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 the value of p/(p-...

    Text Solution

    |

  17. Show that x=2 is a root of the equation |x-6-1 2-3xx-3-3 2xx+2|=0 a...

    Text Solution

    |

  18. Solve the following determinant equations: |(x+a, b, c),( a, x+b, c)...

    Text Solution

    |

  19. Solve the following: |[1,x,x^2], [1,a, b^2], [1,b,c^2]|=0 , a!=b

    Text Solution

    |

  20. If a ,b and c are all non-zero and |1+a1 1 11+b1 1 11+c|=0, then pro...

    Text Solution

    |