Home
Class 12
MATHS
" 42."|[(x-2)^(2),(x-1)^(2),x^(2)],[(x-1...

" 42."|[(x-2)^(2),(x-1)^(2),x^(2)],[(x-1)^(2),x^(2),(x+1)^(2)],[x^(2),(x+1)^(2),(x+2)^(2)]|=-8

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the properties of determinants, prove the following |{:((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2):}|=-8

(x^(2))/((x+1)^(2))+((x+1)^(2))/(x^(2))-(x)/(x+1)+(x+1)/(x)-(7)/(4)=p^(2)

x^(2)+(1)/(x^(2))-7(x-(1)/(x))+8

(x^(2))/(x+1)+((x+1)^(2))/(x^(2))-(x)/(x+2)+(x+1)/(x)-(7)/(4)=p^(2)

If x+(1)/(x)=3, then find x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

Factorise : (x^(2)-1)^(2)+8x(x^(2)+1)+19x^(2)

If y=(x^(2)+x+1)/(x^(2)-x+1)," then "(x^(2)-x+1)^(2)y_(1)=

(x+(1)/(x))^(2)-(x-(1)/(x))^(2)=? 1) x^(2)+(1)/(x^(2)) 2) 4 3) 2x^(2)+(1)/(2x^(2)) 4) 2x^(2)+4+(1)/(2x^(2))

simplify (2x-(1)/(2x))^(2)-(2x+(1)/(2x))(2x-(1)/(2x))