Home
Class 11
MATHS
Which one of the following operations on...

Which one of the following operations on sets is not correct where `B'` denotes the complement of `B`?
A. `(B'-A')uu(A'-B')=(AuuB)-(AnnB)`
B. `(A-B)uu(B-A)=(A'uuB')-(A'nnB')`
C. `(B'-A')nn(A'-B')=(B-A)nn(A-B)`
D. `(B'-A')nn(A'-B')=(B-A')uu(A'-B)`
ANSWER : C

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two sets A and B, (A-B)uu(B-A)=? a. (A-B)uuA b. (B-A)uuB c. (AuuB)-(AnnB) d. (AuuB)nn(AnnB)

For any tow sets A and B(A-B)uu(B-A)=(A-B)uu Ab(B-A)uu Bc*(A uu B)-(A nn B)d(A uu B)nn(A nn B)

If A and B are two sets then (A-B)uu(B-A)=(A uu B)-(A nn B)

Show that : (A uu B)-(A nn B) = (A -B) uu (B-A) .

the symmetric difference of A and B is not equal to (A-B)nn(B-A)(A-B)uu(B-A)(A uu B)-(A nn B){(A uu B)-A}uu{A nn B}

Prove that (AuuB)-(AnnB) is equal to (A-B)uu(B-A) .

Prove that (AuuB)-(AnnB) is equal to (A-B)uu(B-A) .

Which one of the following is correct? a A uu(B-C)=A nn(B nn C') b) A-(B uu C)=(A nn B')nn C' c) A-(B nn C)=(A nn B')nn Cd)A nn(B-C)=(A nn B)nn C

Show that for any sets A and B ; A = (AnnB)uu(A-B) and Auu(B-A) = (AuuB)