Compute the adjoint of
the matrix `A`
given by ,`A=[[1,-2,-2],[2,1,−2],[2,−2,1]]`
and verify that `A(adjA)=|A|I=(adj A)Adot`
Text Solution
Verified by Experts
Given,`A=[[1,-2,-2],[2,1,−2],[2,−2,1]]`
`|A|=[[1,-2,-2],[2,1,−2],[2,−2,1]]`=27
Now,Adjoint of a matrix is the transpose of its' cofactor matrix.
`adj(A)=[[−3,−6,6],[-6,3,−6],[-6,−63]]`
`A.adj(A)=[[1,-2,-2],[2,1,−2],[2,−2,1]]xx[[−3,−6,6],[-6,3,−6],[-6,−6,3]]`
=`[[27,0,0],[0,27,0],[0,0,27]]`
...
Topper's Solved these Questions
ADJOINTS AND INVERSE OF MATRIX
RD SHARMA|Exercise QUESTION|1 Videos
ALGEBRA OF MATRICES
RD SHARMA|Exercise Solved Examples And Exercises|410 Videos
Similar Questions
Explore conceptually related problems
Compute the adjoint of the matrix A given by A=[[1,4,53,2,60,1,0]]A(adjA),=|A|I=(AdjA)A
Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .
Find the adjoint matrix of the matrix quad A=det[[-1,-2,3-2,2,14,-5,2]] and prove that (adjA)A=A(adjA)
[" (1) Find the adjoint of "A" ,where "A=[[1,-1,0],[2,3,-2],[2,0,1]]],[" Also verify that "A*(adj A)=|A|I_(3)" ."]
Find the adjoint of the matrix: [(1,2),(3,4)]
The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is
Find the adjoint of the matrix: [(2,-1),(4,3)]
Find the adjoint of the matrix A=[[4,-2,-1],[1,1,-1],[-1,2,4]] and show that A(adj A)=|A|I