Home
Class 12
MATHS
If A=[cosalpha-sinalpha0sinalphacosalpha...

If `A=[cosalpha-sinalpha0sinalphacosalpha0 0 0 1]` , find `a d j\ A` and verify that `A(a d j\ A)=(a d j\ A)A=|A|I_3` .

Text Solution

Verified by Experts

`A=[[cos alpha, -sin alpha, 0], [sin alpha , cos alpha , 0], [0, 0 , 1]]`
`|A| =0-0+1(cos ^{2} alpha+sin ^{2} alpha) =1`
`a_{11}=cos alpha` ...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0], [0, k]] , then k=

Show : [ [ cosalpha , -sinalpha ] , [ sinalpha , cosalpha ] ]= [ [1 , 0 ] , [ 0 , 1 ]]

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is

If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A^(-1) is equal to

Verify A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I" [2 3-4-6]

Let A(alpha)=[cosalpha0sinalpha0 1 0sinalpha0cosalpha] and X is a set of all matrices A(alpha) for different values of alpha . Which of the following is true (a)A^(-1)(alpha)=A(-alpha) (b) A^(-1)(alpha)=A(alpha) (c)det(a d j(A^(-1)(alpha)))=sec^2 2alpha (d)det(A^(-1)(alpha))=1/(cos2alpha)

If A=[3 1 2-3] , then find |a d j\ A| .