If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=
Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:} is
If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A^(-1) is equal to
Verify A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I" [2 3-4-6]
Let A(alpha)=[cosalpha0sinalpha0 1 0sinalpha0cosalpha] and X is a set of all matrices A(alpha) for different values of alpha . Which of the following is true (a)A^(-1)(alpha)=A(-alpha) (b) A^(-1)(alpha)=A(alpha) (c)det(a d j(A^(-1)(alpha)))=sec^2 2alpha (d)det(A^(-1)(alpha))=1/(cos2alpha)