Home
Class 12
MATHS
If A=[[2 ,3],[ 5,-2]] , show that A^(-1)...

If `A=[[2 ,3],[ 5,-2]]` , show that `A^(-1)=1/(19)Adot`

Text Solution

Verified by Experts

Given,`A=[[2 ,3],[ 5,-2]]`
We now that adj(A)=Transpose of cofactor matrix
`adj(A)=[[-2 -,3],[- 5,2]]`
Also,`|A|=2 xx(-2)-3 xx5`
`|A|=-19`
Thus `A^(-1)=adj(A)/(|A|)`
`A^(-1)=-1/19[[-2 -,3],[- 5,2]]`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of each of the matrices given below : If A=[(2,3),(5,-2)], " show that " A^(-1)=1/19A.

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

If A=[[2,4],[-5,-1]] show that: |3A|=9|A|

If A=[[-1,2],[3,4]] and B=[[2,-3],[5,1]] show that AB!=BA

if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[[1,0,5],[2,-1,3],[4,1,0]] and B=[[3,2,1],[0,2,1],[3,2,5]] .Show that (a) ( A + B )' = A' + B' (b) (2A)'=2A'