Home
Class 12
MATHS
If A=[[1,tanx],[-tanx,1]] , show that A^...

If `A=[[1,tanx],[-tanx,1]]` , show that `A^T\ A^(-1)=[[cos2x,-sin2x],[sin2x,cos2x]]` .

Text Solution

Verified by Experts

Given,`A=[[1,tanx],[-tanx,1]]`
`|A|=1+tan^2x !=0`
So A is invertiable. Also,
`adj(A)=[[1,tanx],[-tanx,1]]^T`
=`[[1,-tanx],[tanx,1]]`
Thus,`A^(-1)=adj(A)/|A|`
=`1/(1+tan^2x)[[1,-tanx],[tanx,1]]`
=`[[1/(1+tan^2x),-tanx/(1+tan^2x)],[tanx/(1+tan^2x),1/(1+tan^2x)]]`
...
Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA|Exercise QUESTION|1 Videos
  • ALGEBRA OF MATRICES

    RD SHARMA|Exercise Solved Examples And Exercises|410 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,tan x-tan x,1]], show that A^(T)A^(-1)=[[cos2x,-sin2xsin2x,cos2x]]

If A=[(1,tanx),(-tanx, 1)], " show that " A' A^(-1)=[(cos 2x,-sin 2x),(sin 2x, cos 2x)] .

(d)/(dx)[(1+cos2x+sin2x)/(1+sin2x-cos2x)]=

D((1-cos2x)/(sin2x))=

int(1)/(cos2x+sin2x)dx=

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

If y = {(1-tanx)/(1+tanx)} , show that (dy)/(dx) = (-2)/((1+sin2x)) .

If y=(1-tanx)/(1+tanx) , prove that (dy)/(dx)=(-2)/(1+sin2x) .

inte^(x)(sin2x-2)/(1-cos2x)dx